# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. # ############################################################ # # BN254 test generator # # ############################################################ # Parameters x = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16) p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x r = x^4 - x^2 + 1 cofactor = Integer('0x396c8c005555e1568c00aaab0000aaab') # Effective cofactor for the G2 curve (that leads to equivalent hashToG2 when using endomorphisms) g2_h_eff = Integer('0xbc69f08f2ee75b3584c6a0ea91b352888e2a8e9145ad7689986ff031508ffe1329c2f178731db956d82bf015d1212b02ec0ec69d7477c1ae954cbc06689f6a359894c0adebbf6b4e8020005aaa95551') # Finite fields Fp = GF(p) K2. = PolynomialRing(Fp) Fp2. = Fp.extension(u^2+1) # K6. = PolynomialRing(Fp2) # Fp6. = Fp2.extension(v^3-Fp2([1, 1]) # K12. = PolynomialRing(Fp6) # K12. = F6.extension(w^2-eta) # Curves b = 4 SNR = Fp2([1, 1]) G1 = EllipticCurve(Fp, [0, b]) G2 = EllipticCurve(Fp2, [0, b*SNR]) # Test generator set_random_seed(1337) print('=========================================') print('G1 vectors: ') for i in range(10): Prand = G1.random_point() # Clear cofactor P = Prand * cofactor (Px, Py, Pz) = P print('Px: ' + Integer(Px).hex()) print('Py: ' + Integer(Py).hex()) # print('Pz: ' + Integer(Pz).hex()) exponent = randrange(r) # Pick an integer below curve order print('scalar: ' + Integer(exponent).hex()) Q = exponent * P (Qx, Qy, Qz) = Q print('Qx: ' + Integer(Qx).hex()) print('Qy: ' + Integer(Qy).hex()) # print('Qz: ' + Integer(Qz).hex()) print('---------------------------------------') print('=========================================') print('G2 vectors: ') for i in range(10): Prand = G2.random_point() # Clear cofactor P = Prand * g2_h_eff (Px, Py, Pz) = P vPx = vector(Px) vPy = vector(Py) # Pz = vector(Pz) print('Px: ' + Integer(vPx[0]).hex() + ' + β * ' + Integer(vPx[1]).hex()) print('Py: ' + Integer(vPy[0]).hex() + ' + β * ' + Integer(vPy[1]).hex()) exponent = randrange(r) # Pick an integer below curve order print('scalar: ' + Integer(exponent).hex()) Q = exponent * P (Qx, Qy, Qz) = Q Qx = vector(Qx) Qy = vector(Qy) print('Qx: ' + Integer(Qx[0]).hex() + ' + β * ' + Integer(Qx[1]).hex()) print('Qy: ' + Integer(Qy[0]).hex() + ' + β * ' + Integer(Qy[1]).hex()) print('---------------------------------------') print('=========================================') # CurveOrder sanity check # # P = G1.random_point() # (Px, Py, Pz) = P # print('Px: ' + Integer(Px).hex()) # print('Py: ' + Integer(Py).hex()) # print('Pz: ' + Integer(Pz).hex()) # # print('order: ' + Integer(r).hex()) # # Q = (r * cofactor) * P # (Qx, Qy, Qz) = Q # print('Qx: ' + Integer(Qx).hex()) # print('Qy: ' + Integer(Qy).hex()) # print('Qz: ' + Integer(Qz).hex())