# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. # ############################################################ # # BLS12-377 # Frobenius Endomorphism # Untwist-Frobenius-Twist isogeny # # ############################################################ # Parameters x = 3 * 2^46 * (7 * 13 * 499) + 1 p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x r = x^4 - x^2 + 1 t = x + 1 print('p : ' + p.hex()) print('r : ' + r.hex()) print('t : ' + t.hex()) # Finite fields Fp = GF(p) K2. = PolynomialRing(Fp) Fp2. = Fp.extension(u^2+5) # √-5 quadratic non-residue # K6. = PolynomialRing(F2) # Fp6. = Fp2.extension(v^3-Fp2([0, 1]) # K12. = PolynomialRing(Fp6) # Fp12. = Fp6.extension(w^2-eta) # Curves b = 1 SNR = Fp2([0, 1]) # √-5 sextic non-residue G1 = EllipticCurve(Fp, [0, b]) G2 = EllipticCurve(Fp2, [0, b/SNR]) # Utilities def fp2_to_hex(a): v = vector(a) return Integer(v[0]).hex() + ' + β * ' + Integer(v[1]).hex() # Frobenius constants (D type: use SNR, M type use 1/SNR) FrobConst_psi = SNR^((p-1)/6) FrobConst_psi_2 = FrobConst_psi * FrobConst_psi FrobConst_psi_3 = FrobConst_psi_2 * FrobConst_psi print('FrobConst_psi : ' + fp2_to_hex(FrobConst_psi)) print('FrobConst_psi_2 : ' + fp2_to_hex(FrobConst_psi_2)) print('FrobConst_psi_3 : ' + fp2_to_hex(FrobConst_psi_3)) print('') FrobConst_psi2_2 = FrobConst_psi_2 * FrobConst_psi_2**p FrobConst_psi2_3 = FrobConst_psi_3 * FrobConst_psi_3**p print('FrobConst_psi2_2 : ' + fp2_to_hex(FrobConst_psi2_2)) print('FrobConst_psi2_3 : ' + fp2_to_hex(FrobConst_psi2_3)) print('') FrobConst_psi3_2 = FrobConst_psi_2 * FrobConst_psi2_2**p FrobConst_psi3_3 = FrobConst_psi_3 * FrobConst_psi2_3**p print('FrobConst_psi3_2 : ' + fp2_to_hex(FrobConst_psi3_2)) print('FrobConst_psi3_3 : ' + fp2_to_hex(FrobConst_psi3_3)) # Recap, with ξ (xi) the sextic non-residue # psi_2 = (ξ^((p-1)/6))^2 = ξ^((p-1)/3) # psi_3 = psi_2 * ξ^((p-1)/6) = ξ^((p-1)/3) * ξ^((p-1)/6) = ξ^((p-1)/2) # # Reminder, in 𝔽p2, frobenius(a) = a^p = conj(a) # psi2_2 = psi_2 * psi_2^p = ξ^((p-1)/3) * ξ^((p-1)/3)^p = ξ^((p-1)/3) * frobenius(ξ)^((p-1)/3) # = norm(ξ)^((p-1)/3) # psi2_3 = psi_3 * psi_3^p = ξ^((p-1)/2) * ξ^((p-1)/2)^p = ξ^((p-1)/2) * frobenius(ξ)^((p-1)/2) # = norm(ξ)^((p-1)/2) # # In Fp²: # - quadratic non-residues respect the equation a^((p²-1)/2) ≡ -1 (mod p²) by the Legendre symbol # - sextic non-residues are also quadratic non-residues so ξ^((p²-1)/2) ≡ -1 (mod p²) # # We have norm(ξ)^((p-1)/2) = (ξ*frobenius(ξ))^((p-1)/2) = (ξ*(ξ^p))^((p-1)/2) = ξ^(p+1)^(p-1)/2 # = ξ^((p²-1)/2) # And ξ^((p²-1)/2) ≡ -1 (mod p²) # So psi2_3 ≡ -1 (mod p²) # # TODO: explain why psi3_2 = [0, -1] # Frobenius Fp2 A = Fp2([5, 7]) Aconj = Fp2([5, -7]) AF = A.frobenius(1) # or pth_power(1) AF2 = A.frobenius(2) AF3 = A.frobenius(3) print('') print('A : ' + fp2_to_hex(A)) print('A conjugate: ' + fp2_to_hex(Aconj)) print('') print('AF1 : ' + fp2_to_hex(AF)) print('AF2 : ' + fp2_to_hex(AF2)) print('AF3 : ' + fp2_to_hex(AF3)) def psi(P): (Px, Py, Pz) = P return G2([ FrobConst_psi_2 * Px.frobenius(), FrobConst_psi_3 * Py.frobenius() # Pz.frobenius() - Always 1 after extract ]) def psi2(P): (Px, Py, Pz) = P return G2([ FrobConst_psi2_2 * Px.frobenius(2), FrobConst_psi2_3 * Py.frobenius(2) # Pz - Always 1 after extract ]) # Test generator set_random_seed(1337) # Vectors print('\nTest vectors:') for i in range(4): P = G2.random_point() (Px, Py, Pz) = P vPx = vector(Px) vPy = vector(Py) # Pz = vector(Pz) print(f'\nTest {i}') print(' Px: ' + Integer(vPx[0]).hex() + ' + β * ' + Integer(vPx[1]).hex()) print(' Py: ' + Integer(vPy[0]).hex() + ' + β * ' + Integer(vPy[1]).hex()) # Galbraith-Lin-Scott, 2008, Theorem 1 # Fuentes-Castaneda et al, 2011, Equation (2) assert psi(psi(P)) - t*psi(P) + p*P == G2([0, 1, 0]) # Galbraith-Scott, 2008, Lemma 1 # k-th cyclotomic polynomial with k = 12 assert psi2(psi2(P)) - psi2(P) + P == G2([0, 1, 0]) assert psi(psi(P)) == psi2(P) (Qx, Qy, Qz) = psi(P) vQx = vector(Qx) vQy = vector(Qy) print(' Qx: ' + Integer(vQx[0]).hex() + ' + β * ' + Integer(vQx[1]).hex()) print(' Qy: ' + Integer(vQy[0]).hex() + ' + β * ' + Integer(vQy[1]).hex())