# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. import # Standard library std/[tables, unittest, times], # Internals ../constantine/config/common, ../constantine/[arithmetic, primitives], ../constantine/towers, ../constantine/config/curves, ../constantine/io/io_towers, ../constantine/pairing/cyclotomic_fp12, ../constantine/isogeny/frobenius, # Test utilities ../helpers/[prng_unsafe, static_for] const Iters = 4 TestCurves = [ BN254_Nogami, BN254_Snarks, BLS12_377, BLS12_381 ] type RandomGen = enum Uniform HighHammingWeight Long01Sequence var rng: RngState let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32 rng.seed(seed) echo "\n------------------------------------------------------\n" echo "test_pairing_fp12_sparse xoshiro512** seed: ", seed func random_elem(rng: var RngState, F: typedesc, gen: RandomGen): F {.inline, noInit.} = if gen == Uniform: result = rng.random_unsafe(F) elif gen == HighHammingWeight: result = rng.random_highHammingWeight(F) else: result = rng.random_long01Seq(F) suite "Pairing - Cyclotomic subgroup - GΦ₁₂(p) = {α ∈ Fp¹² : α^Φ₁₂(p) ≡ 1 (mod p¹²)}" & " [" & $WordBitwidth & "-bit mode]": test "Easy part of the final exponentiation maps to the cyclotomic subgroup": proc test_final_exp_easy_cycl(C: static Curve, gen: static RandomGen) = for _ in 0 ..< Iters: var f = rng.random_elem(Fp12[C], gen) f.finalExpEasy() var f4, minus_f2: typeof(f) minus_f2.frobenius_map(f, 2) # f^p² f4.frobenius_map(minus_f2, 2) # f^p⁴ minus_f2.conj() # f^⁻²p f *= f4 f *= minus_f2 # f^(p⁴-p²+1) = f^Φ₁₂(p) check: bool(f.isOne()) staticFor(curve, TestCurves): test_final_exp_easy_cycl(curve, gen = Uniform) test_final_exp_easy_cycl(curve, gen = HighHammingWeight) test_final_exp_easy_cycl(curve, gen = Long01Sequence) test "Cyclotomic inverse": proc test_cycl_inverse(C: static Curve, gen: static RandomGen) = for _ in 0 ..< Iters: var f = rng.random_elem(Fp12[C], gen) f.finalExpEasy() var g = f f.cyclotomic_inv() f *= g check: bool(f.isOne()) staticFor(curve, TestCurves): test_cycl_inverse(curve, gen = Uniform) test_cycl_inverse(curve, gen = HighHammingWeight) test_cycl_inverse(curve, gen = Long01Sequence) test "Cyclotomic squaring": proc test_cycl_squaring_in_place(C: static Curve, gen: static RandomGen) = for _ in 0 ..< Iters: var f = rng.random_elem(Fp12[C], gen) f.finalExpEasy() var g = f f.square() g.cyclotomic_square() check: bool(f == g) staticFor(curve, TestCurves): test_cycl_squaring_in_place(curve, gen = Uniform) test_cycl_squaring_in_place(curve, gen = HighHammingWeight) test_cycl_squaring_in_place(curve, gen = Long01Sequence) proc test_cycl_squaring_out_place(C: static Curve, gen: static RandomGen) = for _ in 0 ..< Iters: var f = rng.random_elem(Fp12[C], gen) f.finalExpEasy() var g = f var r: typeof(f) f.square() r.cyclotomic_square(g) check: bool(f == r) staticFor(curve, TestCurves): test_cycl_squaring_out_place(curve, gen = Uniform) test_cycl_squaring_out_place(curve, gen = HighHammingWeight) test_cycl_squaring_out_place(curve, gen = Long01Sequence)