# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. # ############################################################ # # Benchmark of pairings # # ############################################################ import # Internals ../constantine/config/[curves, common], ../constantine/arithmetic, ../constantine/io/io_bigints, ../constantine/towers, ../constantine/elliptic/[ec_shortweierstrass_projective, ec_shortweierstrass_affine], ../constantine/hash_to_curve/cofactors, ../constantine/pairing/[ cyclotomic_fp12, lines_projective, mul_fp12_by_lines, pairing_bls12, pairing_bn ], # Helpers ../helpers/prng_unsafe, ./bench_blueprint export notes proc separator*() = separator(132) proc report(op, curve: string, startTime, stopTime: MonoTime, startClk, stopClk: int64, iters: int) = let ns = inNanoseconds((stopTime-startTime) div iters) let throughput = 1e9 / float64(ns) when SupportsGetTicks: echo &"{op:<40} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)" else: echo &"{op:<40} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op" template bench(op: string, C: static Curve, iters: int, body: untyped): untyped = measure(iters, startTime, stopTime, startClk, stopClk, body) report(op, $C, startTime, stopTime, startClk, stopClk, iters) func random_point*(rng: var RngState, EC: typedesc): EC {.noInit.} = result = rng.random_unsafe(EC) result.clearCofactorReference() proc lineDoubleBench*(C: static Curve, iters: int) = var line: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], OnTwist]) let P = rng.random_point(ECP_ShortW_Prj[Fp[C], NotOnTwist]) var Paff: ECP_ShortW_Aff[Fp[C], NotOnTwist] Paff.affineFromProjective(P) bench("Line double", C, iters): line.line_double(T, Paff) proc lineAddBench*(C: static Curve, iters: int) = var line: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], OnTwist]) let P = rng.random_point(ECP_ShortW_Prj[Fp[C], NotOnTwist]) Q = rng.random_point(ECP_ShortW_Prj[Fp2[C], OnTwist]) var Paff: ECP_ShortW_Aff[Fp[C], NotOnTwist] Qaff: ECP_ShortW_Aff[Fp2[C], OnTwist] Paff.affineFromProjective(P) Qaff.affineFromProjective(Q) bench("Line add", C, iters): line.line_add(T, Qaff, Paff) proc mulFp12byLine_xyz000_Bench*(C: static Curve, iters: int) = var line: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], OnTwist]) let P = rng.random_point(ECP_ShortW_Prj[Fp[C], NotOnTwist]) var Paff: ECP_ShortW_Aff[Fp[C], NotOnTwist] Paff.affineFromProjective(P) line.line_double(T, Paff) var f = rng.random_unsafe(Fp12[C]) bench("Mul 𝔽p12 by line xyz000", C, iters): f.mul_sparse_by_line_xyz000(line) proc mulFp12byLine_xy000z_Bench*(C: static Curve, iters: int) = var line: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], OnTwist]) let P = rng.random_point(ECP_ShortW_Prj[Fp[C], NotOnTwist]) var Paff: ECP_ShortW_Aff[Fp[C], NotOnTwist] Paff.affineFromProjective(P) line.line_double(T, Paff) var f = rng.random_unsafe(Fp12[C]) bench("Mul 𝔽p12 by line xy000z", C, iters): f.mul_sparse_by_line_xy000z(line) proc millerLoopBLS12Bench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Prj[Fp[C], NotOnTwist]) Q = rng.random_point(ECP_ShortW_Prj[Fp2[C], OnTwist]) var Paff: ECP_ShortW_Aff[Fp[C], NotOnTwist] Qaff: ECP_ShortW_Aff[Fp2[C], OnTwist] Paff.affineFromProjective(P) Qaff.affineFromProjective(Q) var f: Fp12[C] bench("Miller Loop BLS12", C, iters): f.millerLoopGenericBLS12(Paff, Qaff) proc millerLoopBNBench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Prj[Fp[C], NotOnTwist]) Q = rng.random_point(ECP_ShortW_Prj[Fp2[C], OnTwist]) var Paff: ECP_ShortW_Aff[Fp[C], NotOnTwist] Qaff: ECP_ShortW_Aff[Fp2[C], OnTwist] Paff.affineFromProjective(P) Qaff.affineFromProjective(Q) var f: Fp12[C] bench("Miller Loop BN", C, iters): f.millerLoopGenericBN(Paff, Qaff) proc finalExpEasyBench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) bench("Final Exponentiation Easy", C, iters): r.finalExpEasy() proc finalExpHardBLS12Bench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) r.finalExpEasy() bench("Final Exponentiation Hard BLS12", C, iters): r.finalExpHard_BLS12() proc finalExpHardBNBench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) r.finalExpEasy() bench("Final Exponentiation Hard BN", C, iters): r.finalExpHard_BN() proc finalExpBLS12Bench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) bench("Final Exponentiation BLS12", C, iters): r.finalExpEasy() r.finalExpHard_BLS12() proc finalExpBNBench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) bench("Final Exponentiation BN", C, iters): r.finalExpEasy() r.finalExpHard_BN() proc pairingBLS12Bench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Prj[Fp[C], NotOnTwist]) Q = rng.random_point(ECP_ShortW_Prj[Fp2[C], OnTwist]) var f: Fp12[C] bench("Pairing BLS12", C, iters): f.pairing_bls12(P, Q) proc pairingBNBench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Prj[Fp[C], NotOnTwist]) Q = rng.random_point(ECP_ShortW_Prj[Fp2[C], OnTwist]) var f: Fp12[C] bench("Pairing BN", C, iters): f.pairing_bn(P, Q)