# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. import ../constantine/platforms/abstractions, ../constantine/math/arithmetic, ../constantine/math/arithmetic/limbs_montgomery, ../constantine/math/config/curves, ../constantine/math/elliptic/[ ec_shortweierstrass_affine, ec_shortweierstrass_projective, ec_shortweierstrass_jacobian, ec_twistededwards_affine, ec_twistededwards_projective], ../constantine/math/io/io_bigints, ../constantine/math/extension_fields/towers # ############################################################ # # Pseudo-Random Number Generator # Unsafe: for testing and benchmarking purposes # # ############################################################ # # Our field elements for elliptic curve cryptography # are in the 2^256~2^512 range. # For pairings, with embedding degrees of 12 to 48 # We would need 12~48 field elements per point on the curve # # The recommendation by Vigna at http://prng.di.unimi.it # is to have a period of t^2 if we need t values (i.e. about 2^1024) # but also that for all practical purposes 2^256 period is enough # # We use 2^512 to cover the range the base field elements type RngState* = object ## This is the state of a Xoshiro512** PRNG ## Unsafe: for testing and benchmarking purposes only s: array[8, uint64] func splitMix64(state: var uint64): uint64 = state += 0x9e3779b97f4a7c15'u64 result = state result = (result xor (result shr 30)) * 0xbf58476d1ce4e5b9'u64 result = (result xor (result shr 27)) * 0xbf58476d1ce4e5b9'u64 result = result xor (result shr 31) func seed*(rng: var RngState, x: SomeInteger) = ## Seed the random number generator with a fixed seed var sm64 = uint64(x) rng.s[0] = splitMix64(sm64) rng.s[1] = splitMix64(sm64) rng.s[2] = splitMix64(sm64) rng.s[3] = splitMix64(sm64) rng.s[4] = splitMix64(sm64) rng.s[5] = splitMix64(sm64) rng.s[6] = splitMix64(sm64) rng.s[7] = splitMix64(sm64) func rotl(x: uint64, k: static int): uint64 {.inline.} = return (x shl k) or (x shr (64 - k)) template `^=`(x: var uint64, y: uint64) = x = x xor y func next(rng: var RngState): uint64 = ## Compute a random uint64 from the input state ## using xoshiro512** algorithm by Vigna et al ## State is updated. result = rotl(rng.s[1] * 5, 7) * 9 let t = rng.s[1] shl 11 rng.s[2] ^= rng.s[0]; rng.s[5] ^= rng.s[1]; rng.s[1] ^= rng.s[2]; rng.s[7] ^= rng.s[3]; rng.s[3] ^= rng.s[4]; rng.s[4] ^= rng.s[5]; rng.s[0] ^= rng.s[6]; rng.s[6] ^= rng.s[7]; rng.s[6] ^= t; rng.s[7] = rotl(rng.s[7], 21); # Integer ranges # ------------------------------------------------------------ func random_unsafe*(rng: var RngState, maxExclusive: uint32): uint32 = ## Generate a random integer in 0 ..< maxExclusive ## Uses an unbiaised generation method ## See Lemire's algorithm modified by Melissa O'Neill ## https://www.pcg-random.org/posts/bounded-rands.html let max = maxExclusive var x = uint32 rng.next() var m = x.uint64 * max.uint64 var l = uint32 m if l < max: var t = not(max) + 1 # -max if t >= max: t -= max if t >= max: t = t mod max while l < t: x = uint32 rng.next() m = x.uint64 * max.uint64 l = uint32 m return uint32(m shr 32) func random_unsafe*[T: SomeInteger](rng: var RngState, inclRange: Slice[T]): T = ## Return a random integer in the given range. ## The range bounds must fit in an int32. let maxExclusive = inclRange.b + 1 - inclRange.a result = T(rng.random_unsafe(uint32 maxExclusive)) result += inclRange.a # Containers # ------------------------------------------------------------ func sample_unsafe*[T](rng: var RngState, src: openarray[T]): T = ## Return a random sample from an array result = src[rng.random_unsafe(uint32 src.len)] # BigInts and Fields # ------------------------------------------------------------ # # Statistics note: # - A skewed distribution is not symmetric, it has a longer tail in one direction. # for example a RNG that is not centered over 0.5 distribution of 0 and 1 but # might produces more 1 than 0 or vice-versa. # - A bias is a result that is consistently off from the true value i.e. # a deviation of an estimate from the quantity under observation func reduceViaMont[N: static int, F](reduced: var array[N, SecretWord], unreduced: array[2*N, SecretWord], _: typedesc[F]) = # reduced.reduce(unreduced, FF.fieldMod()) # ---------------------------------------- # With R ≡ (2^WordBitWidth)^numWords (mod p) # redc2xMont(a) computes a/R (mod p) # mulMont(a, b) computes a.b.R⁻¹ (mod p) # Hence with b = R², this computes a (mod p). # Montgomery reduction works word by word, quadratically # so for 384-bit prime (6-words on 64-bit CPUs), so 6*6 = 36, twice for multiplication and reduction # significantly faster than division which works bit-by-bit due to constant-time requirement reduced.redc2xMont(unreduced, # a/R F.fieldMod().limbs, F.getNegInvModWord(), F.getSpareBits()) reduced.mulMont(reduced, F.getR2modP().limbs, # (a/R) * R² * R⁻¹ ≡ a (mod p) F.fieldMod().limbs, F.getNegInvModWord(), F.getSpareBits()) func random_unsafe(rng: var RngState, a: var Limbs) = ## Initialize standalone limbs for i in 0 ..< a.len: a[i] = SecretWord(rng.next()) func random_unsafe(rng: var RngState, a: var BigInt) = ## Initialize a standalone BigInt rng.random_unsafe(a.limbs) func random_unsafe(rng: var RngState, a: var FF) = ## Initialize a Field element ## Unsafe: for testing and benchmarking purposes only var unreduced{.noinit.}: Limbs[2*a.mres.limbs.len] rng.random_unsafe(unreduced) a.mres.limbs.reduceViaMont(unreduced, FF) func random_unsafe(rng: var RngState, a: var ExtensionField) = ## Recursively initialize an extension Field element ## Unsafe: for testing and benchmarking purposes only for i in 0 ..< a.coords.len: rng.random_unsafe(a.coords[i]) func random_word_highHammingWeight(rng: var RngState): BaseType = let numZeros = rng.random_unsafe(WordBitWidth div 3) # Average Hamming Weight is 1-0.33/2 = 0.83 result = high(BaseType) for _ in 0 ..< numZeros: result = result.clearBit rng.random_unsafe(WordBitWidth) func random_highHammingWeight(rng: var RngState, a: var Limbs) = ## Initialize standalone limbs ## with high Hamming weight ## to have a higher probability of triggering carries for i in 0 ..< a.len: a[i] = SecretWord rng.random_word_highHammingWeight() func random_highHammingWeight(rng: var RngState, a: var BigInt) = ## Initialize a standalone BigInt ## with high Hamming weight ## to have a higher probability of triggering carries rng.random_highHammingWeight(a.limbs) func random_highHammingWeight(rng: var RngState, a: var FF) = ## Recursively initialize a BigInt (part of a field) or Field element ## Unsafe: for testing and benchmarking purposes only ## The result will have a high Hamming Weight ## to have a higher probability of triggering carries var unreduced{.noinit.}: Limbs[2*a.mres.limbs.len] rng.random_highHammingWeight(unreduced) a.mres.limbs.reduceViaMont(unreduced, FF) func random_highHammingWeight(rng: var RngState, a: var ExtensionField) = ## Recursively initialize an extension Field element ## Unsafe: for testing and benchmarking purposes only for i in 0 ..< a.coords.len: rng.random_highHammingWeight(a.coords[i]) func random_long01Seq(rng: var RngState, a: var openArray[byte]) = ## Initialize a bytearray ## It is skewed towards producing strings of 1111... and 0000 ## to trigger edge cases # See libsecp256k1: https://github.com/bitcoin-core/secp256k1/blob/dbd41db1/src/testrand_impl.h#L90-L104 let Bits = a.len * 8 var bit = 0 zeroMem(a[0].addr, a.len) while bit < Bits : var now = 1 + (rng.random_unsafe(1 shl 6) * rng.random_unsafe(1 shl 5) + 16) div 31 let val = rng.sample_unsafe([0, 1]) while now > 0 and bit < Bits: a[bit shr 3] = a[bit shr 3] or byte(val shl (bit and 7)) dec now inc bit func random_long01Seq(rng: var RngState, a: var BigInt) = ## Initialize a bigint ## It is skewed towards producing strings of 1111... and 0000 ## to trigger edge cases var buf: array[(a.bits + 7) div 8, byte] rng.random_long01Seq(buf) let order = rng.sample_unsafe([bigEndian, littleEndian]) if order == bigEndian: a.unmarshal(buf, bigEndian) else: a.unmarshal(buf, littleEndian) func random_long01Seq(rng: var RngState, a: var Limbs) = ## Initialize standalone limbs ## It is skewed towards producing strings of 1111... and 0000 ## to trigger edge cases const bits = a.len*WordBitWidth var t{.noInit.}: BigInt[bits] rng.random_long01Seq(t) a = t.limbs func random_long01Seq(rng: var RngState, a: var FF) = ## Recursively initialize a BigInt (part of a field) or Field element ## It is skewed towards producing strings of 1111... and 0000 ## to trigger edge cases var unreduced{.noinit.}: Limbs[2*a.mres.limbs.len] rng.random_long01Seq(unreduced) a.mres.limbs.reduceViaMont(unreduced, FF) func random_long01Seq(rng: var RngState, a: var ExtensionField) = ## Recursively initialize an extension Field element ## Unsafe: for testing and benchmarking purposes only for i in 0 ..< a.coords.len: rng.random_long01Seq(a.coords[i]) # Elliptic curves # ------------------------------------------------------------ type ECP = ECP_ShortW_Aff or ECP_ShortW_Prj or ECP_ShortW_Jac or ECP_TwEdwards_Aff or ECP_TwEdwards_Prj type ECP_ext = ECP_ShortW_Prj or ECP_ShortW_Jac or ECP_TwEdwards_Prj template trySetFromCoord[F](a: ECP, fieldElem: F): SecretBool = when a is (ECP_ShortW_Aff or ECP_ShortW_Prj or ECP_ShortW_Jac): trySetFromCoordX(a, fieldElem) else: trySetFromCoordY(a, fieldElem) template trySetFromCoords[F](a: ECP, fieldElem, scale: F): SecretBool = when a is (ECP_ShortW_Prj or ECP_ShortW_Jac): trySetFromCoordsXandZ(a, fieldElem, scale) else: trySetFromCoordsYandZ(a, fieldElem, scale) func random_unsafe(rng: var RngState, a: var ECP) = ## Initialize a random curve point with Z coordinate == 1 ## Unsafe: for testing and benchmarking purposes only var fieldElem {.noInit.}: a.F var success = CtFalse while not bool(success): # Euler's criterion: there are (p-1)/2 squares in a field with modulus `p` # so we have a probability of ~0.5 to get a good point rng.random_unsafe(fieldElem) success = trySetFromCoord(a, fieldElem) func random_unsafe_with_randZ(rng: var RngState, a: var ECP_ext) = ## Initialize a random curve point with Z coordinate being random ## Unsafe: for testing and benchmarking purposes only var Z{.noInit.}: a.F rng.random_unsafe(Z) # If Z is zero, X will be zero and that will be an infinity point var fieldElem {.noInit.}: a.F var success = CtFalse while not bool(success): rng.random_unsafe(fieldElem) success = trySetFromCoords(a, fieldElem, Z) func random_highHammingWeight(rng: var RngState, a: var ECP) = ## Initialize a random curve point with Z coordinate == 1 ## This will be generated with a biaised RNG with high Hamming Weight ## to trigger carry bugs var fieldElem {.noInit.}: a.F var success = CtFalse while not bool(success): # Euler's criterion: there are (p-1)/2 squares in a field with modulus `p` # so we have a probability of ~0.5 to get a good point rng.random_highHammingWeight(fieldElem) success = trySetFromCoord(a, fieldElem) func random_highHammingWeight_with_randZ(rng: var RngState, a: var ECP_ext) = ## Initialize a random curve point with Z coordinate == 1 ## This will be generated with a biaised RNG with high Hamming Weight ## to trigger carry bugs var Z{.noInit.}: a.F rng.random_highHammingWeight(Z) # If Z is zero, X will be zero and that will be an infinity point var fieldElem {.noInit.}: a.F var success = CtFalse while not bool(success): rng.random_highHammingWeight(fieldElem) success = trySetFromCoords(a, fieldElem, Z) func random_long01Seq(rng: var RngState, a: var ECP) = ## Initialize a random curve point with Z coordinate == 1 ## This will be generated with a biaised RNG ## that produces long bitstrings of 0 and 1 ## to trigger edge cases var fieldElem {.noInit.}: a.F var success = CtFalse while not bool(success): # Euler's criterion: there are (p-1)/2 squares in a field with modulus `p` # so we have a probability of ~0.5 to get a good point rng.random_long01Seq(fieldElem) success = trySetFromCoord(a, fieldElem) func random_long01Seq_with_randZ(rng: var RngState, a: var ECP_ext) = ## Initialize a random curve point with Z coordinate == 1 ## This will be generated with a biaised RNG ## that produces long bitstrings of 0 and 1 ## to trigger edge cases var Z{.noInit.}: a.F rng.random_long01Seq(Z) # If Z is zero, X will be zero and that will be an infinity point var fieldElem {.noInit.}: a.F var success = CtFalse while not bool(success): rng.random_long01Seq(fieldElem) success = trySetFromCoords(a, fieldElem, Z) # Generic over any Constantine type # ------------------------------------------------------------ func random_unsafe*(rng: var RngState, T: typedesc): T = ## Create a random Field or Extension Field or Curve Element ## Unsafe: for testing and benchmarking purposes only when T is ECP: rng.random_unsafe(result) elif T is SomeNumber: cast[T](rng.next()) # TODO: Rely on casting integer actually converting in C (i.e. uint64->uint32 is valid) elif T is BigInt: rng.random_unsafe(result) else: # Fields rng.random_unsafe(result) func random_unsafe_with_randZ*(rng: var RngState, T: typedesc[ECP_ext]): T = ## Create a random curve element with a random Z coordinate ## Unsafe: for testing and benchmarking purposes only rng.random_unsafe_with_randZ(result) func random_highHammingWeight*(rng: var RngState, T: typedesc): T = ## Create a random Field or Extension Field or Curve Element ## Skewed towards high Hamming Weight when T is ECP: rng.random_highHammingWeight(result) elif T is SomeNumber: cast[T](rng.next()) # TODO: Rely on casting integer actually converting in C (i.e. uint64->uint32 is valid) elif T is BigInt: rng.random_highHammingWeight(result) else: # Fields rng.random_highHammingWeight(result) func random_highHammingWeight_with_randZ*(rng: var RngState, T: typedesc[ECP_ext]): T = ## Create a random curve element with a random Z coordinate ## Skewed towards high Hamming Weight rng.random_highHammingWeight_with_randZ(result) func random_long01Seq*(rng: var RngState, T: typedesc): T = ## Create a random Field or Extension Field or Curve Element ## Skewed towards long bitstrings of 0 or 1 when T is ECP: rng.random_long01Seq(result) elif T is SomeNumber: cast[T](rng.next()) # TODO: Rely on casting integer actually converting in C (i.e. uint64->uint32 is valid) elif T is BigInt: rng.random_long01Seq(result) else: # Fields rng.random_long01Seq(result) func random_long01Seq_with_randZ*(rng: var RngState, T: typedesc[ECP_ext]): T = ## Create a random curve element with a random Z coordinate ## Skewed towards long bitstrings of 0 or 1 rng.random_long01Seq_with_randZ(result) # Byte sequences # ------------------------------------------------------------ func random_byte_seq*(rng: var RngState, length: int): seq[byte] = result.newSeq(length) for b in result.mitems: b = byte rng.next() # Sanity checks # ------------------------------------------------------------ when isMainModule: import std/[tables, times, strutils] var rng: RngState let timeSeed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32 rng.seed(timeSeed) echo "prng_sanity_checks xoshiro512** seed: ", timeSeed proc test[T](s: Slice[T]) = var c = initCountTable[int]() for _ in 0 ..< 1_000_000: c.inc(rng.random_unsafe(s)) echo "1'000'000 pseudo-random outputs from ", s.a, " to ", s.b, " (incl): ", c test(0..1) test(0..2) test(1..52) test(-10..10) echo "\n-----------------------------\n" echo "High Hamming Weight check" for _ in 0 ..< 10: let word = rng.random_word_highHammingWeight() echo "0b", cast[BiggestInt](word).toBin(WordBitWidth), " - 0x", word.toHex() echo "\n-----------------------------\n" echo "Long strings of 0 or 1 check" for _ in 0 ..< 10: var a: BigInt[127] rng.random_long01seq(a) stdout.write "0b" for word in a.limbs: stdout.write cast[BiggestInt](word).toBin(WordBitWidth) stdout.write " - 0x" for word in a.limbs: stdout.write word.BaseType.toHex() stdout.write '\n'