# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. # ############################################################ # # Benchmark of pairings # # ############################################################ import # Internals ../constantine/platforms/abstractions, ../constantine/math/config/curves, ../constantine/math/arithmetic, ../constantine/math/extension_fields, ../constantine/math/ec_shortweierstrass, ../constantine/math/constants/zoo_subgroups, ../constantine/math/pairing/[ cyclotomic_subgroup, lines_eval, pairing_bls12, pairing_bn ], ../constantine/math/constants/zoo_pairings, # Helpers ../helpers/prng_unsafe, ./bench_blueprint export zoo_pairings # generic sandwich https://github.com/nim-lang/Nim/issues/11225 export notes proc separator*() = separator(132) proc report(op, curve: string, startTime, stopTime: MonoTime, startClk, stopClk: int64, iters: int) = let ns = inNanoseconds((stopTime-startTime) div iters) let throughput = 1e9 / float64(ns) when SupportsGetTicks: echo &"{op:<40} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)" else: echo &"{op:<40} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op" template bench(op: string, C: static Curve, iters: int, body: untyped): untyped = measure(iters, startTime, stopTime, startClk, stopClk, body) report(op, $C, startTime, stopTime, startClk, stopClk, iters) func clearCofactor[F; G: static Subgroup]( ec: var ECP_ShortW_Aff[F, G]) = # For now we don't have any affine operation defined var t {.noInit.}: ECP_ShortW_Prj[F, G] t.fromAffine(ec) t.clearCofactor() ec.affine(t) func random_point*(rng: var RngState, EC: typedesc): EC {.noInit.} = result = rng.random_unsafe(EC) result.clearCofactor() proc lineDoubleBench*(C: static Curve, iters: int) = var line: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2]) let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) bench("Line double", C, iters): line.line_double(T, P) proc lineAddBench*(C: static Curve, iters: int) = var line: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2]) let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2]) bench("Line add", C, iters): line.line_add(T, Q, P) proc mulFp12byLine_Bench*(C: static Curve, iters: int) = var line: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2]) let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) line.line_double(T, P) var f = rng.random_unsafe(Fp12[C]) bench("Mul 𝔽p12 by line", C, iters): f.mul_by_line(line) proc mulLinebyLine_Bench*(C: static Curve, iters: int) = var l0, l1: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2]) let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) l0.line_double(T, P) l1.line_double(T, P) var f {.noInit.}: Fp12[C] bench("Mul line by line", C, iters): f.prod_from_2_lines(l0, l1) proc mulFp12by_prod2lines_Bench*(C: static Curve, iters: int) = var f = rng.random_unsafe(Fp12[C]) let g = rng.random_unsafe(Fp12[C]) bench("Mul 𝔽p12 by product of 2 lines", C, iters): f.mul_by_prod_of_2_lines(g) proc mulFp12_by_2lines_v1_Bench*(C: static Curve, iters: int) = var l0, l1: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2]) let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) l0.line_double(T, P) l1.line_double(T, P) var f = rng.random_unsafe(Fp12[C]) bench("mulFp12 by 2 lines v1", C, iters): f.mul_by_line(l0) f.mul_by_line(l1) proc mulFp12_by_2lines_v2_Bench*(C: static Curve, iters: int) = var l0, l1: Line[Fp2[C]] var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2]) let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) l0.line_double(T, P) l1.line_double(T, P) var f = rng.random_unsafe(Fp12[C]) bench("mulFp12 by 2 lines v2", C, iters): var f2 {.noInit.}: Fp12[C] f2.prod_from_2_lines(l0, l1) f.mul_by_prod_of_2_lines(f2) proc mulBench*(C: static Curve, iters: int) = var r: Fp12[C] let x = rng.random_unsafe(Fp12[C]) let y = rng.random_unsafe(Fp12[C]) preventOptimAway(r) bench("Multiplication 𝔽p12", C, iters): r.prod(x, y) proc sqrBench*(C: static Curve, iters: int) = var r: Fp12[C] let x = rng.random_unsafe(Fp12[C]) preventOptimAway(r) bench("Squaring 𝔽p12", C, iters): r.square(x) proc cyclotomicSquare_Bench*(C: static Curve, iters: int) = var f = rng.random_unsafe(Fp12[C]) bench("Squaring 𝔽p12 in cyclotomic subgroup", C, iters): f.cyclotomic_square() proc expCurveParamBench*(C: static Curve, iters: int) = var f = rng.random_unsafe(Fp12[C]) bench("Cyclotomic Exp by curve parameter", C, iters): f.cycl_exp_by_curve_param(f) proc cyclotomicSquareCompressed_Bench*(C: static Curve, iters: int) = var f = rng.random_unsafe(Fp12[C]) var g: G2345[Fp2[C]] g.fromFpk(f) bench("Cyclotomic Compressed Squaring 𝔽p12", C, iters): g.cyclotomic_square_compressed() proc cyclotomicDecompression_Bench*(C: static Curve, iters: int) = var f = rng.random_unsafe(Fp12[C]) var gs: array[1, G2345[Fp2[C]]] gs[0].fromFpk(f) var g1s_ratio: array[1, tuple[g1_num, g1_den: Fp2[C]]] var g0s, g1s: array[1, Fp2[C]] bench("Cyclotomic Decompression 𝔽p12", C, iters): recover_g1(g1s_ratio[0].g1_num, g1s_ratio[0].g1_den, gs[0]) g1s.batch_ratio_g1s(g1s_ratio) g0s[0].recover_g0(g1s[0], gs[0]) proc millerLoopBLS12Bench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2]) var f: Fp12[C] bench("Miller Loop BLS12", C, iters): f.millerLoopGenericBLS12(P, Q) proc millerLoopBNBench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2]) var f: Fp12[C] bench("Miller Loop BN", C, iters): f.millerLoopGenericBN(P, Q) proc finalExpEasyBench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) bench("Final Exponentiation Easy", C, iters): r.finalExpEasy() proc finalExpHardBLS12Bench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) r.finalExpEasy() bench("Final Exponentiation Hard BLS12", C, iters): r.finalExpHard_BLS12() proc finalExpHardBNBench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) r.finalExpEasy() bench("Final Exponentiation Hard BN", C, iters): r.finalExpHard_BN() proc finalExpBLS12Bench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) bench("Final Exponentiation BLS12", C, iters): r.finalExpEasy() r.finalExpHard_BLS12() proc finalExpBNBench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) bench("Final Exponentiation BN", C, iters): r.finalExpEasy() r.finalExpHard_BN() proc pairingBLS12Bench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2]) var f: Fp12[C] bench("Pairing BLS12", C, iters): f.pairing_bls12(P, Q) proc pairing_multisingle_BLS12Bench*(C: static Curve, N: static int, iters: int) = var Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], G1]] Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], G2]] GTs {.noInit.}: array[N, Fp12[C]] for i in 0 ..< N: Ps[i] = rng.random_unsafe(typeof(Ps[0])) Qs[i] = rng.random_unsafe(typeof(Qs[0])) var f: Fp12[C] bench("Pairing BLS12 non-batched: " & $N, C, iters): for i in 0 ..< N: GTs[i].pairing_bls12(Ps[i], Qs[i]) f = GTs[0] for i in 1 ..< N: f *= GTs[i] proc pairing_multipairing_BLS12Bench*(C: static Curve, N: static int, iters: int) = var Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], G1]] Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], G2]] for i in 0 ..< N: Ps[i] = rng.random_unsafe(typeof(Ps[0])) Qs[i] = rng.random_unsafe(typeof(Qs[0])) var f: Fp12[C] bench("Pairing BLS12 batched: " & $N, C, iters): f.pairing_bls12(Ps, Qs) proc pairingBNBench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2]) var f: Fp12[C] bench("Pairing BN", C, iters): f.pairing_bn(P, Q) proc pairing_multisingle_BNBench*(C: static Curve, N: static int, iters: int) = var Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], G1]] Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], G2]] GTs {.noInit.}: array[N, Fp12[C]] for i in 0 ..< N: Ps[i] = rng.random_unsafe(typeof(Ps[0])) Qs[i] = rng.random_unsafe(typeof(Qs[0])) var f: Fp12[C] bench("Pairing BN non-batched: " & $N, C, iters): for i in 0 ..< N: GTs[i].pairing_bn(Ps[i], Qs[i]) f = GTs[0] for i in 1 ..< N: f *= GTs[i] proc pairing_multipairing_BNBench*(C: static Curve, N: static int, iters: int) = var Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], G1]] Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], G2]] for i in 0 ..< N: Ps[i] = rng.random_unsafe(typeof(Ps[0])) Qs[i] = rng.random_unsafe(typeof(Qs[0])) var f: Fp12[C] bench("Pairing BN batched: " & $N, C, iters): f.pairing_bn(Ps, Qs)