Multipairing (#165)
* Productionize multipairings for BLS12-381 * typo * arg order + benchmark * Introduce mul_3way_sparse_sparse * cleanup MultiMiller loop * fix init sparse optimization in multimiller loop [skip ci]
This commit is contained in:
parent
979d183657
commit
f5c0b6245d
|
@ -77,8 +77,8 @@ Supports:
|
|||
- [x] Field arithmetics
|
||||
- [x] Curve arithmetic
|
||||
- [x] Pairing
|
||||
- [ ] Multi-Pairing
|
||||
- [ ] Hash-To-Curve
|
||||
- [x] Multi-Pairing
|
||||
- [x] Hash-To-Curve
|
||||
|
||||
Families:
|
||||
- BN: Barreto-Naehrig
|
||||
|
|
|
@ -49,7 +49,11 @@ proc main() =
|
|||
finalExpBLS12Bench(curve, Iters)
|
||||
separator()
|
||||
pairingBLS12Bench(curve, Iters)
|
||||
pairing_multipairing_BLS12Bench(curve, 1, Iters)
|
||||
separator()
|
||||
staticFor j, 2, 17:
|
||||
pairing_multisingle_BLS12Bench(curve, j, Iters div j)
|
||||
pairing_multipairing_BLS12Bench(curve, j, Iters div j)
|
||||
|
||||
main()
|
||||
notes()
|
||||
|
|
|
@ -105,7 +105,7 @@ proc mulLinebyLine_xyz000_Bench*(C: static Curve, iters: int) =
|
|||
var f = rng.random_unsafe(Fp12[C])
|
||||
|
||||
bench("Mul line xyz000 by line xyz000", C, iters):
|
||||
f.mul_xyz000_xyz000_into_abcdefghij00(l0, l1)
|
||||
f.prod_xyz000_xyz000_into_abcdefghij00(l0, l1)
|
||||
|
||||
proc mulLinebyLine_xy000z_Bench*(C: static Curve, iters: int) =
|
||||
var l0, l1: Line[Fp2[C]]
|
||||
|
@ -116,7 +116,7 @@ proc mulLinebyLine_xy000z_Bench*(C: static Curve, iters: int) =
|
|||
var f = rng.random_unsafe(Fp12[C])
|
||||
|
||||
bench("Mul line xy000z by line xy000z", C, iters):
|
||||
f.mul_xy000z_xy000z_into_abcd00efghij(l0, l1)
|
||||
f.prod_xy000z_xy000z_into_abcd00efghij(l0, l1)
|
||||
|
||||
proc mulFp12by_abcdefghij00_Bench*(C: static Curve, iters: int) =
|
||||
var f = rng.random_unsafe(Fp12[C])
|
||||
|
@ -154,7 +154,7 @@ proc mulFp12_by_2lines_v2_xyz000_Bench*(C: static Curve, iters: int) =
|
|||
|
||||
bench("mulFp12 by 2 lines v2", C, iters):
|
||||
var f2 {.noInit.}: Fp12[C]
|
||||
f2.mul_xyz000_xyz000_into_abcdefghij00(l0, l1)
|
||||
f2.prod_xyz000_xyz000_into_abcdefghij00(l0, l1)
|
||||
f.mul_sparse_by_abcdefghij00(f2)
|
||||
|
||||
proc mulFp12_by_2lines_v1_xy000z_Bench*(C: static Curve, iters: int) =
|
||||
|
@ -179,7 +179,7 @@ proc mulFp12_by_2lines_v2_xy000z_Bench*(C: static Curve, iters: int) =
|
|||
|
||||
bench("mulFp12 by 2 lines v2", C, iters):
|
||||
var f2 {.noInit.}: Fp12[C]
|
||||
f2.mul_xy000z_xy000z_into_abcd00efghij(l0, l1)
|
||||
f2.prod_xy000z_xy000z_into_abcd00efghij(l0, l1)
|
||||
f.mul_sparse_by_abcd00efghij(f2)
|
||||
|
||||
proc millerLoopBLS12Bench*(C: static Curve, iters: int) =
|
||||
|
@ -238,6 +238,43 @@ proc pairingBLS12Bench*(C: static Curve, iters: int) =
|
|||
bench("Pairing BLS12", C, iters):
|
||||
f.pairing_bls12(P, Q)
|
||||
|
||||
proc pairing_multisingle_BLS12Bench*(C: static Curve, N: static int, iters: int) =
|
||||
let
|
||||
P = rng.random_point(ECP_ShortW_Aff[Fp[C], NotOnTwist])
|
||||
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], OnTwist])
|
||||
|
||||
var
|
||||
Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], NotOnTwist]]
|
||||
Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], OnTwist]]
|
||||
|
||||
GTs {.noInit.}: array[N, Fp12[C]]
|
||||
|
||||
for i in 0 ..< N:
|
||||
Ps[i] = rng.random_unsafe(typeof(Ps[0]))
|
||||
Qs[i] = rng.random_unsafe(typeof(Qs[0]))
|
||||
|
||||
var f: Fp12[C]
|
||||
bench("Pairing BLS12 multi-single " & $N & " pairings", C, iters):
|
||||
for i in 0 ..< N:
|
||||
GTs[i].pairing_bls12(Ps[i], Qs[i])
|
||||
|
||||
f = GTs[0]
|
||||
for i in 1 ..< N:
|
||||
f *= GTs[i]
|
||||
|
||||
proc pairing_multipairing_BLS12Bench*(C: static Curve, N: static int, iters: int) =
|
||||
var
|
||||
Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], NotOnTwist]]
|
||||
Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], OnTwist]]
|
||||
|
||||
for i in 0 ..< N:
|
||||
Ps[i] = rng.random_unsafe(typeof(Ps[0]))
|
||||
Qs[i] = rng.random_unsafe(typeof(Qs[0]))
|
||||
|
||||
var f: Fp12[C]
|
||||
bench("Pairing BLS12 multipairing " & $N & " pairings", C, iters):
|
||||
f.pairing_bls12(Ps, Qs)
|
||||
|
||||
proc pairingBNBench*(C: static Curve, iters: int) =
|
||||
let
|
||||
P = rng.random_point(ECP_ShortW_Aff[Fp[C], NotOnTwist])
|
||||
|
|
|
@ -148,6 +148,7 @@ const testDesc: seq[tuple[path: string, useGMP: bool]] = @[
|
|||
("tests/t_pairing_bn254_snarks_optate.nim", false),
|
||||
("tests/t_pairing_bls12_377_optate.nim", false),
|
||||
("tests/t_pairing_bls12_381_optate.nim", false),
|
||||
("tests/t_pairing_bls12_381_multi.nim", false),
|
||||
|
||||
# Hashing vs OpenSSL
|
||||
# ----------------------------------------------------------
|
||||
|
|
|
@ -13,6 +13,9 @@ import
|
|||
../towers,
|
||||
../isogeny/frobenius
|
||||
|
||||
# No exceptions allowed
|
||||
{.push raises: [].}
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
# Gϕ₁₂, Cyclotomic subgroup of Fp12
|
||||
|
|
|
@ -9,12 +9,14 @@
|
|||
import
|
||||
std/typetraits,
|
||||
../primitives,
|
||||
../config/curves,
|
||||
../arithmetic,
|
||||
../towers,
|
||||
../elliptic/ec_shortweierstrass_affine,
|
||||
../io/io_towers
|
||||
|
||||
# No exceptions allowed
|
||||
{.push raises: [].}
|
||||
|
||||
type
|
||||
Line*[F] = object
|
||||
## Packed line representation over a E'(Fp^k/d)
|
||||
|
|
|
@ -19,6 +19,9 @@ import
|
|||
|
||||
export lines_common
|
||||
|
||||
# No exceptions allowed
|
||||
{.push raises: [].}
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
# Miller Loop's Line Evaluation
|
||||
|
|
|
@ -15,6 +15,9 @@ import
|
|||
./lines_projective,
|
||||
./mul_fp6_by_lines, ./mul_fp12_by_lines
|
||||
|
||||
# No exceptions allowed
|
||||
{.push raises: [].}
|
||||
|
||||
# ############################################################
|
||||
# #
|
||||
# Basic Miller Loop #
|
||||
|
@ -111,118 +114,6 @@ func millerCorrectionBN*[FT, F1, F2](
|
|||
# we hardcode unrolled addition chains.
|
||||
# This should also contribute to performance.
|
||||
#
|
||||
# Multi-pairing discussion:
|
||||
# Aranha & Scott proposes 2 different approaches for multi-pairing.
|
||||
#
|
||||
# -----
|
||||
# Scott
|
||||
#
|
||||
# Algorithm 2: Calculate and store line functions for BLS12 curve
|
||||
# Input: Q ∈ G2, P ∈ G1 , curve parameter u
|
||||
# Output: An array g of blog2(u)c line functions ∈ Fp12
|
||||
# 1 T ← Q
|
||||
# 2 for i ← ceil(log2(u)) − 1 to 0 do
|
||||
# 3 g[i] ← lT,T(P), T ← 2T
|
||||
# 4 if ui = 1 then
|
||||
# 5 g[i] ← g[i].lT,Q(P), T ← T + Q
|
||||
# 6 return g
|
||||
#
|
||||
# And to accumulate lines from a new (P, Q) tuple of points
|
||||
#
|
||||
# Algorithm 4: Accumulate another set of line functions into g
|
||||
# Input: The array g, Qj ∈ G2 , Pj ∈ G1 , curve parameter u
|
||||
# Output: Updated array g of ceil(log2(u)) line functions ∈ Fp12
|
||||
# 1 T ← Qj
|
||||
# 2 for i ← blog2 (u)c − 1 to 0 do
|
||||
# 3 t ← lT,T (Pj), T ← 2T
|
||||
# 4 if ui = 1 then
|
||||
# 5 t ← t.lT,Qj (Pj), T ← T + Qj
|
||||
# 6 g[i] ← g[i].t
|
||||
# 7 return g
|
||||
#
|
||||
# ------
|
||||
# Aranha
|
||||
#
|
||||
# Algorithm 11.2 Explicit multipairing version of Algorithm 11.1.
|
||||
# (we extract the Miller Loop part only)
|
||||
# Input : P1 , P2 , . . . Pn ∈ G1 ,
|
||||
# Q1 , Q2, . . . Qn ∈ G2
|
||||
# Output: (we focus on the Miller Loop)
|
||||
#
|
||||
# Write l in binary form, l = sum(0 ..< m-1)
|
||||
# f ← 1, l ← abs(AteParam)
|
||||
# for j ← 1 to n do
|
||||
# Tj ← Qj
|
||||
# end
|
||||
#
|
||||
# for i = m-2 down to 0 do
|
||||
# f ← f²
|
||||
# for j ← 1 to n do
|
||||
# f ← f gTj,Tj(Pj), Tj ← [2]Tj
|
||||
# if li = 1 then
|
||||
# f ← f gTj,Qj(Pj), Tj ← Tj + Qj
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
#
|
||||
# -----
|
||||
# Assuming we have N tuples (Pj, Qj) of points j in 0 ..< N
|
||||
# and I operations to do in our Miller loop:
|
||||
# - I = HammingWeight(AteParam) + Bitwidth(AteParam)
|
||||
# - HammingWeight(AteParam) corresponds to line additions
|
||||
# - Bitwidth(AteParam) corresponds to line doublings
|
||||
#
|
||||
# Scott approach is to have:
|
||||
# - I Fp12 accumulators `g`
|
||||
# - 1 G2 accumulator `T`
|
||||
# and then accumulating each (Pj, Qj) into their corresponding `g` accumulator.
|
||||
#
|
||||
# Aranha approach is to have:
|
||||
# - 1 Fp12 accumulator `f`
|
||||
# - N G2 accumulators `T`
|
||||
# and accumulate N points per I.
|
||||
#
|
||||
# Scott approach is fully "online"/"streaming",
|
||||
# while Aranha's saves space.
|
||||
# For BLS12_381,
|
||||
# I = 68 hence we would need 68*12*48 = 39168 bytes (381-bit needs 48 bytes)
|
||||
# G2 has size 3*2*48 = 288 bytes (3 proj coordinates on Fp2)
|
||||
# and we choose N (which can be 1 for single pairing or reverting to Scott approach).
|
||||
#
|
||||
# In actual use, "streaming pairings" are not used, pairings to compute are receive
|
||||
# by batch, for example for blockchain you receive a batch of N blocks to verify from one peer.
|
||||
# Furthermore, 39kB would be over L1 cache size and incurs cache misses.
|
||||
# Additionally Aranha approach would make it easier to batch inversions
|
||||
# using Montgomery's simultaneous inversion technique.
|
||||
# Lastly, while a higher level API will need to store N (Pj, Qj) pairs for multi-pairings
|
||||
# for Aranha approach, it can decide how big N is depending on hardware and/or protocol.
|
||||
#
|
||||
# Regarding optimizations, as the Fp12 accumulator is dense
|
||||
# and lines are sparse (xyz000 or xy000z) Scott mentions the following costs:
|
||||
# - squaring is 11m
|
||||
# - Dense-sparse is 13m
|
||||
# - sparse-sparse is 6m
|
||||
# - Dense-(somewhat sparse) is 17m
|
||||
# Hence when accumulating lines from multiple points:
|
||||
# - 2x Dense-sparse is 26m
|
||||
# - sparse-sparse then Dense-(somewhat sparse) is 23m
|
||||
# a 11.5% speedup
|
||||
#
|
||||
# We can use Aranha approach but process lines function 2-by-2 merging them
|
||||
# before merging them to the dense Fp12 accumulator.
|
||||
#
|
||||
# In benchmarks though, the speedup doesn't work for BN curves but does for BLS curves.
|
||||
#
|
||||
# For single pairings
|
||||
# Unfortunately, it's BN254_Snarks which requires a lot of addition in the Miller loop.
|
||||
# BLS12-377 and BLS12-381 require 6 and 7 line addition in their Miller loop,
|
||||
# the saving is about 150 cycles per addition for about 1000 cycles saved.
|
||||
# A full pairing is ~2M cycles so this is only 0.5% for significantly
|
||||
# more maintenance and bounds analysis complexity.
|
||||
#
|
||||
# For multipairing it is interesting since for a BLS signature verification (double pairing)
|
||||
# we would save 1000 cycles per Ate iteration so ~70000 cycles, while a Miller loop is ~800000 cycles.
|
||||
|
||||
# Miller Loop - single pairing
|
||||
# ----------------------------------------------------------------------------
|
||||
|
||||
|
@ -263,7 +154,7 @@ func miller_init_double_then_add*[FT, F1, F2](
|
|||
# - The first line is squared (sparse * sparse)
|
||||
# - The second is (somewhat-sparse * sparse)
|
||||
when numDoublings >= 2:
|
||||
f.mul_sparse_sparse(line, line)
|
||||
f.prod_sparse_sparse(line, line)
|
||||
line.line_double(T, P)
|
||||
f.mul(line)
|
||||
for _ in 2 ..< numDoublings:
|
||||
|
@ -278,13 +169,10 @@ func miller_init_double_then_add*[FT, F1, F2](
|
|||
# we special case the addition as
|
||||
# - The first line and second are sparse (sparse * sparse)
|
||||
when numDoublings == 1:
|
||||
# TODO: sparse * sparse
|
||||
# f *= line <=> f = line for the first iteration
|
||||
# With Fp2 -> Fp4 -> Fp12 towering and a M-Twist
|
||||
# The line corresponds to a sparse xy000z Fp12
|
||||
var line2 {.noInit.}: Line[F2]
|
||||
line2.line_add(T, Q, P)
|
||||
f.mul_sparse_sparse(line, line2)
|
||||
f.prod_sparse_sparse(line, line2)
|
||||
else:
|
||||
line.line_add(T, Q, P)
|
||||
f.mul(line)
|
||||
|
@ -324,3 +212,137 @@ func miller_accum_double_then_add*[FT, F1, F2](
|
|||
|
||||
# Miller Loop - multi-pairing
|
||||
# ----------------------------------------------------------------------------
|
||||
#
|
||||
# Multi-pairing discussion:
|
||||
# Aranha & Scott proposes 2 different approaches for multi-pairing.
|
||||
# See `multi_pairing.md``
|
||||
# We implement Aranha approach
|
||||
|
||||
func double_jToN[N: static int, FT, F1, F2](
|
||||
f: var FT,
|
||||
j: static int,
|
||||
line0, line1: var Line[F2],
|
||||
Ts: var array[N, ECP_ShortW_Prj[F2, OnTwist]],
|
||||
Ps: array[N, ECP_ShortW_Aff[F1, NotOnTwist]]) =
|
||||
## Doubling steps for pairings j to N
|
||||
|
||||
{.push checks: off.} # No OverflowError or IndexError allowed
|
||||
# Sparse merge 2 by 2, starting from j
|
||||
for i in countup(j, N-1, 2):
|
||||
if i+1 >= N:
|
||||
break
|
||||
|
||||
line0.line_double(Ts[i], Ps[i])
|
||||
line1.line_double(Ts[i+1], Ps[i+1])
|
||||
f.mul_3way_sparse_sparse(line0, line1)
|
||||
|
||||
when (N and 1) == 1: # N >= 2 and N is odd, there is a leftover
|
||||
line0.line_double(Ts[N-1], Ps[N-1])
|
||||
f.mul(line0)
|
||||
|
||||
{.pop.}
|
||||
|
||||
func add_jToN[N: static int, FT, F1, F2](
|
||||
f: var FT,
|
||||
j: static int,
|
||||
line0, line1: var Line[F2],
|
||||
Ts: var array[N, ECP_ShortW_Prj[F2, OnTwist]],
|
||||
Qs: array[N, ECP_ShortW_Aff[F2, OnTwist]],
|
||||
Ps: array[N, ECP_ShortW_Aff[F1, NotOnTwist]])=
|
||||
## Addition steps for pairings 0 to N
|
||||
|
||||
{.push checks: off.} # No OverflowError or IndexError allowed
|
||||
# Sparse merge 2 by 2, starting from 0
|
||||
for i in countup(j, N-1, 2):
|
||||
if i+1 >= N:
|
||||
break
|
||||
|
||||
line0.line_add(Ts[i], Qs[i], Ps[i])
|
||||
line1.line_add(Ts[i+1], Qs[i+1], Ps[i+1])
|
||||
f.mul_3way_sparse_sparse(line0, line1)
|
||||
|
||||
when (N and 1) == 1: # N >= 2 and N is odd, there is a leftover
|
||||
line0.line_add(Ts[N-1], Qs[N-1], Ps[N-1])
|
||||
f.mul(line0)
|
||||
|
||||
{.pop.}
|
||||
|
||||
func miller_init_double_then_add*[N: static int, FT, F1, F2](
|
||||
f: var FT,
|
||||
Ts: var array[N, ECP_ShortW_Prj[F2, OnTwist]],
|
||||
Qs: array[N, ECP_ShortW_Aff[F2, OnTwist]],
|
||||
Ps: array[N, ECP_ShortW_Aff[F1, NotOnTwist]],
|
||||
numDoublings: static int
|
||||
) =
|
||||
## Start a Miller Loop
|
||||
## This means
|
||||
## - 1 doubling
|
||||
## - 1 add
|
||||
##
|
||||
## f is overwritten
|
||||
## Ts are overwritten by Qs
|
||||
static:
|
||||
doAssert f.c0 is Fp4
|
||||
doAssert FT.C == F1.C
|
||||
doAssert FT.C == F2.C
|
||||
|
||||
{.push checks: off.} # No OverflowError or IndexError allowed
|
||||
var line0 {.noInit.}, line1 {.noInit.}: Line[F2]
|
||||
|
||||
# First step: T <- Q, f = 1 (mod p¹²), f *= line
|
||||
# ----------------------------------------------
|
||||
for i in 0 ..< N:
|
||||
Ts[i].projectiveFromAffine(Qs[i])
|
||||
|
||||
line0.line_double(Ts[0], Ps[0])
|
||||
when N >= 2:
|
||||
line1.line_double(Ts[1], Ps[1])
|
||||
f.prod_sparse_sparse(line0, line1)
|
||||
f.double_jToN(j=2, line0, line1, Ts, Ps)
|
||||
|
||||
# Doubling steps: 0b10...00
|
||||
# ------------------------------------------------
|
||||
when numDoublings > 1: # Already did the MSB doubling
|
||||
when N == 1: # f = line0
|
||||
f.prod_sparse_sparse(line0, line0) # f.square()
|
||||
line0.line_double(Ts[1], Ps[1])
|
||||
f.mul(line0)
|
||||
for _ in 2 ..< numDoublings:
|
||||
f.square()
|
||||
f.double_jtoN(j=0, line0, line1, Ts, Ps)
|
||||
else:
|
||||
for _ in 0 ..< numDoublings:
|
||||
f.square()
|
||||
f.double_jtoN(j=0, line0, line1, Ts, Ps)
|
||||
|
||||
# Addition step: 0b10...01
|
||||
# ------------------------------------------------
|
||||
|
||||
when numDoublings == 1 and N == 1: # f = line0
|
||||
line1.line_add(Ts[0], Qs[0], Ps[0])
|
||||
f.prod_sparse_sparse(line0, line1)
|
||||
else:
|
||||
f.add_jToN(j=0,line0, line1, Ts, Qs, Ps)
|
||||
|
||||
{.pop.} # No OverflowError or IndexError allowed
|
||||
|
||||
func miller_accum_double_then_add*[N: static int, FT, F1, F2](
|
||||
f: var FT,
|
||||
Ts: var array[N, ECP_ShortW_Prj[F2, OnTwist]],
|
||||
Qs: array[N, ECP_ShortW_Aff[F2, OnTwist]],
|
||||
Ps: array[N, ECP_ShortW_Aff[F1, NotOnTwist]],
|
||||
numDoublings: int,
|
||||
add = true
|
||||
) =
|
||||
## Continue a Miller Loop with
|
||||
## - `numDoubling` doublings
|
||||
## - 1 add
|
||||
##
|
||||
## f and T are updated
|
||||
var line0{.noInit.}, line1{.noinit.}: Line[F2]
|
||||
for _ in 0 ..< numDoublings:
|
||||
f.square()
|
||||
f.double_jtoN(j=0, line0, line1, Ts, Ps)
|
||||
|
||||
if add:
|
||||
f.add_jToN(j=0, line0, line1, Ts, Qs, Ps)
|
||||
|
|
|
@ -13,6 +13,8 @@ import
|
|||
../towers,
|
||||
./lines_projective
|
||||
|
||||
# No exceptions allowed
|
||||
{.push raises: [].}
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
|
@ -203,7 +205,7 @@ func mul_sparse_by_line_xyz000*[C: static Curve](
|
|||
f2x.sum2xMod(f2x, V1)
|
||||
f.c2.redc2x(f2x)
|
||||
|
||||
func mul_xyz000_xyz000_into_abcdefghij00*[C: static Curve](f: var Fp12[C], l0, l1: Line[Fp2[C]]) =
|
||||
func prod_xyz000_xyz000_into_abcdefghij00*[C: static Curve](f: var Fp12[C], l0, l1: Line[Fp2[C]]) =
|
||||
## Multiply 2 lines together
|
||||
## The result is sparse in f.c1.c1
|
||||
# In the following equations (taken from cubic extension implementation)
|
||||
|
@ -407,7 +409,7 @@ func mul_sparse_by_line_xy000z*[C: static Curve](
|
|||
f2x.sum2xMod(f2x, V2)
|
||||
f.c1.redc2x(f2x)
|
||||
|
||||
func mul_xy000z_xy000z_into_abcd00efghij*[C: static Curve](f: var Fp12[C], l0, l1: Line[Fp2[C]]) =
|
||||
func prod_xy000z_xy000z_into_abcd00efghij*[C: static Curve](f: var Fp12[C], l0, l1: Line[Fp2[C]]) =
|
||||
## Multiply 2 lines together
|
||||
## The result is sparse in f.c1.c0
|
||||
# In the following equations (taken from cubic extension implementation)
|
||||
|
@ -529,6 +531,7 @@ func mul_sparse_by_abcd00efghij*[C: static Curve](
|
|||
# ------------------------------------------------------------
|
||||
|
||||
func mul*[C](f: var Fp12[C], line: Line[Fp2[C]]) {.inline.} =
|
||||
## Multiply an element of Fp12 by a sparse line function (xyz000 or xy000z)
|
||||
when C.getSexticTwist() == D_Twist:
|
||||
f.mul_sparse_by_line_xyz000(line)
|
||||
elif C.getSexticTwist() == M_Twist:
|
||||
|
@ -536,10 +539,26 @@ func mul*[C](f: var Fp12[C], line: Line[Fp2[C]]) {.inline.} =
|
|||
else:
|
||||
{.error: "A line function assumes that the curve has a twist".}
|
||||
|
||||
func mul_sparse_sparse*[C](f: var Fp12[C], line0, line1: Line[Fp2[C]]) {.inline.} =
|
||||
func prod_sparse_sparse*[C](f: var Fp12[C], line0, line1: Line[Fp2[C]]) {.inline.} =
|
||||
## Multiply 2 lines function (xyz000 or xy000z)
|
||||
## and store the result in f
|
||||
## f is overwritten
|
||||
when C.getSexticTwist() == D_Twist:
|
||||
f.mul_xyz000_xyz000_into_abcdefghij00(line0, line1)
|
||||
f.prod_xyz000_xyz000_into_abcdefghij00(line0, line1)
|
||||
elif C.getSexticTwist() == M_Twist:
|
||||
f.mul_xy000z_xy000z_into_abcd00efghij(line0, line1)
|
||||
f.prod_xy000z_xy000z_into_abcd00efghij(line0, line1)
|
||||
else:
|
||||
{.error: "A line function assumes that the curve has a twist".}
|
||||
|
||||
func mul_3way_sparse_sparse*[C](f: var Fp12[C], line0, line1: Line[Fp2[C]]) {.inline.} =
|
||||
## Multiply f*line0*line1 with lines (xyz000 or xy000z)
|
||||
## f is updated with the result
|
||||
var t{.noInit.}: typeof(f)
|
||||
when C.getSexticTwist() == D_Twist:
|
||||
t.prod_xyz000_xyz000_into_abcdefghij00(line0, line1)
|
||||
f.mul_sparse_by_abcdefghij00(t)
|
||||
elif C.getSexticTwist() == M_Twist:
|
||||
t.prod_xy000z_xy000z_into_abcd00efghij(line0, line1)
|
||||
f.mul_sparse_by_abcd00efghij(t)
|
||||
else:
|
||||
{.error: "A line function assumes that the curve has a twist".}
|
||||
|
|
|
@ -13,6 +13,8 @@ import
|
|||
../towers,
|
||||
./lines_projective
|
||||
|
||||
# No exceptions allowed
|
||||
{.push raises: [].}
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
|
|
|
@ -0,0 +1,127 @@
|
|||
# Multi-pairing discussion:
|
||||
|
||||
Aranha & Scott proposes 2 different approaches for multi-pairing.
|
||||
|
||||
- Software Implementation, Algorithm 11.2 & 11.3\
|
||||
Aranha, Dominguez Perez, A. Mrabet, Schwabe,\
|
||||
Guide to Pairing-Based Cryptography, 2015
|
||||
- Pairing Implementation Revisited
|
||||
Mike Scott, 2019
|
||||
https://eprint.iacr.org/2019/077.pdf
|
||||
|
||||
## Scott approach
|
||||
|
||||
```
|
||||
Algorithm 2: Calculate and store line functions for BLS12 curve
|
||||
Input: Q ∈ G2, P ∈ G1 , curve parameter u
|
||||
Output: An array g of ceil(log2(u)) line functions ∈ Fp12
|
||||
1 T ← Q
|
||||
2 for i ← ceil(log2(u)) − 1 to 0 do
|
||||
3 g[i] ← lT,T(P), T ← 2T
|
||||
4 if ui = 1 then
|
||||
5 g[i] ← g[i].lT,Q(P), T ← T + Q
|
||||
6 return g
|
||||
```
|
||||
|
||||
And to accumulate lines from a new (P, Q) tuple of points
|
||||
|
||||
```
|
||||
Algorithm 4: Accumulate another set of line functions into g
|
||||
Input: The array g, Qj ∈ G2 , Pj ∈ G1 , curve parameter u
|
||||
Output: Updated array g of ceil(log2(u)) line functions ∈ Fp12
|
||||
1 T ← Qj
|
||||
2 for i ← ceil(log2(u)) − 1 to 0 do
|
||||
3 t ← lT,T (Pj), T ← 2T
|
||||
4 if ui = 1 then
|
||||
5 t ← t.lT,Qj (Pj), T ← T + Qj
|
||||
6 g[i] ← g[i].t
|
||||
7 return g
|
||||
```
|
||||
|
||||
## Aranha approach
|
||||
|
||||
```
|
||||
Algorithm 11.2 Explicit multipairing version of Algorithm 11.1.
|
||||
(we extract the Miller Loop part only)
|
||||
Input : P1 , P2 , . . . Pn ∈ G1 ,
|
||||
Q1 , Q2, . . . Qn ∈ G2
|
||||
Output: (we focus on the Miller Loop)
|
||||
|
||||
Write l in binary form, l = sum(0 ..< m-1)
|
||||
f ← 1, l ← abs(AteParam)
|
||||
for j ← 1 to n do
|
||||
Tj ← Qj
|
||||
end
|
||||
|
||||
for i = m-2 down to 0 do
|
||||
f ← f²
|
||||
for j ← 1 to n do
|
||||
f ← f.gTj,Tj(Pj), Tj ← [2]Tj
|
||||
if li = 1 then
|
||||
f ← f.gTj,Qj(Pj), Tj ← Tj + Qj
|
||||
end
|
||||
end
|
||||
end
|
||||
```
|
||||
|
||||
## Analysis
|
||||
|
||||
Assuming we have N tuples (Pj, Qj) of points j in 0 ..< N
|
||||
and M operations to do in our Miller loop:
|
||||
- M = HammingWeight(AteParam) + Bitwidth(AteParam)
|
||||
- HammingWeight(AteParam) corresponds to line additions
|
||||
- Bitwidth(AteParam) corresponds to line doublings
|
||||
|
||||
Scott approach is to have:
|
||||
- M Fp12 line accumulators `g`
|
||||
- 1 G2 accumulator `T`
|
||||
and then accumulating each (Pj, Qj) lines into their corresponding `g` accumulator.
|
||||
Then those precomputed lines are merged into the final GT result.
|
||||
|
||||
Aranha approach is to have:
|
||||
- 1 Fp12 accumulator `f`
|
||||
- N G2 accumulators `T`
|
||||
and then pairings of each tuple are directly merged on GT.
|
||||
|
||||
Scott approach is fully "online"/"streaming",
|
||||
while Aranha's saves space.
|
||||
For BLS12_381,
|
||||
M = 68 hence we would need 68*12*48 = 39168 bytes (381-bit needs 48 bytes)
|
||||
G2 has size 3*2*48 = 288 bytes (3 proj coordinates on Fp2)
|
||||
and while we can choose N to be anything (which can be 1 for single pairing or reverting to Scott approach).
|
||||
|
||||
In practice, "streaming pairings" are not used, pairings to compute are receive
|
||||
by batch, for example for blockchain you receive a batch of N blocks to verify from one peer.
|
||||
Furthermore, 39kB would be over L1 cache size and incurs cache misses.
|
||||
Additionally Aranha approach would make it easier to batch inversions
|
||||
using Montgomery's simultaneous inversion technique.
|
||||
Lastly, while a higher level API will need to store N (Pj, Qj) pairs for multi-pairings
|
||||
for Aranha approach, it can decide how big N is depending on hardware and/or protocol.
|
||||
|
||||
## Further optimizations
|
||||
|
||||
Regarding optimizations, as the Fp12 accumulator is dense
|
||||
and lines are sparse (xyz000 or xy000z) Scott mentions the following costs:
|
||||
- squaring is 11m
|
||||
- Dense-sparse is 13m
|
||||
- sparse-sparse is 6m
|
||||
- Dense-(somewhat sparse) is 17m
|
||||
Hence when accumulating lines from multiple points:
|
||||
- 2x Dense-sparse is 26m
|
||||
- sparse-sparse then Dense-(somewhat sparse) is 23m
|
||||
a 11.5% speedup
|
||||
|
||||
We can use Aranha approach but process lines function 2-by-2 merging them
|
||||
before merging them to the dense Fp12 accumulator.
|
||||
|
||||
In benchmarks though, the speedup doesn't work for BN curves but does for BLS curves.
|
||||
|
||||
For single pairings
|
||||
Unfortunately, it's BN254_Snarks which requires a lot of addition in the Miller loop.
|
||||
BLS12-377 and BLS12-381 require 6 and 7 line addition in their Miller loop,
|
||||
the saving is about 150 cycles per addition for about 1000 cycles saved.
|
||||
A full pairing is ~2M cycles so this is only 0.5% for significantly
|
||||
more maintenance and bounds analysis complexity.
|
||||
|
||||
For multipairing it is interesting since for a BLS signature verification (double pairing)
|
||||
we would save 1000 cycles per Ate iteration so ~70000 cycles, while a Miller loop is ~800000 cycles.
|
|
@ -21,6 +21,9 @@ import
|
|||
|
||||
export zoo_pairings # generic sandwich https://github.com/nim-lang/Nim/issues/11225
|
||||
|
||||
# No exceptions allowed
|
||||
{.push raises: [].}
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
# Optimal ATE pairing for
|
||||
|
@ -154,3 +157,16 @@ func pairing_bls12*[C](
|
|||
gt.millerLoopAddchain(Q, P)
|
||||
gt.finalExpEasy()
|
||||
gt.finalExpHard_BLS12()
|
||||
|
||||
func pairing_bls12*[N: static int, C](
|
||||
gt: var Fp12[C],
|
||||
Ps: array[N, ECP_ShortW_Aff[Fp[C], NotOnTwist]],
|
||||
Qs: array[N, ECP_ShortW_Aff[Fp2[C], OnTwist]]) {.meter.} =
|
||||
## Compute the optimal Ate Pairing for BLS12 curves
|
||||
## Input: an array of Ps ∈ G1 and Qs ∈ G2
|
||||
## Output:
|
||||
## The product of pairings
|
||||
## e(P₀, Q₀) * e(P₁, Q₁) * e(P₂, Q₂) * ... * e(Pₙ, Qₙ) ∈ Gt
|
||||
gt.millerLoopAddchain(Qs, Ps)
|
||||
gt.finalExpEasy()
|
||||
gt.finalExpHard_BLS12()
|
||||
|
|
|
@ -22,6 +22,9 @@ import
|
|||
|
||||
export zoo_pairings # generic sandwich https://github.com/nim-lang/Nim/issues/11225
|
||||
|
||||
# No exceptions allowed
|
||||
{.push raises: [].}
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
# Optimal ATE pairing for
|
||||
|
|
|
@ -1,338 +0,0 @@
|
|||
# Constantine
|
||||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||||
# Licensed and distributed under either of
|
||||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
import
|
||||
../config/[common, curves, type_ff],
|
||||
../towers,
|
||||
../elliptic/[
|
||||
ec_shortweierstrass_affine,
|
||||
ec_shortweierstrass_projective
|
||||
],
|
||||
../curves/zoo_pairings,
|
||||
./lines_projective, ./mul_fp12_by_lines,
|
||||
./miller_loops
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
# Optimal ATE pairing for
|
||||
# BLS12-381
|
||||
#
|
||||
# ############################################################
|
||||
#
|
||||
# - Software Implementation, Algorithm 11.2 & 11.3
|
||||
# Aranha, Dominguez Perez, A. Mrabet, Schwabe,
|
||||
# Guide to Pairing-Based Cryptography, 2015
|
||||
#
|
||||
# - Physical Attacks,
|
||||
# N. El Mrabet, Goubin, Guilley, Fournier, Jauvart, Moreau, Rauzy, Rondepierre,
|
||||
# Guide to Pairing-Based Cryptography, 2015
|
||||
#
|
||||
# - Pairing Implementation Revisited
|
||||
# Mike Scott, 2019
|
||||
# https://eprint.iacr.org/2019/077.pdf
|
||||
#
|
||||
# Fault attacks:
|
||||
# To limite exposure to some fault attacks (flipping bits with a laser on embedded):
|
||||
# - changing the number of Miller loop iterations
|
||||
# - flipping the bits in the Miller loop
|
||||
# we hardcode unrolled addition chains.
|
||||
# This should also contribute to performance.
|
||||
#
|
||||
# Multi-pairing discussion:
|
||||
# Aranha & Scott proposes 2 different approaches for multi-pairing.
|
||||
#
|
||||
# -----
|
||||
# Scott
|
||||
#
|
||||
# Algorithm 2: Calculate and store line functions for BLS12 curve
|
||||
# Input: Q ∈ G2, P ∈ G1 , curve parameter u
|
||||
# Output: An array g of blog2(u)c line functions ∈ Fp12
|
||||
# 1 T ← Q
|
||||
# 2 for i ← ceil(log2(u)) − 1 to 0 do
|
||||
# 3 g[i] ← lT,T(P), T ← 2T
|
||||
# 4 if ui = 1 then
|
||||
# 5 g[i] ← g[i].lT,Q(P), T ← T + Q
|
||||
# 6 return g
|
||||
#
|
||||
# And to accumulate lines from a new (P, Q) tuple of points
|
||||
#
|
||||
# Algorithm 4: Accumulate another set of line functions into g
|
||||
# Input: The array g, Qj ∈ G2 , Pj ∈ G1 , curve parameter u
|
||||
# Output: Updated array g of ceil(log2(u)) line functions ∈ Fp12
|
||||
# 1 T ← Qj
|
||||
# 2 for i ← blog2 (u)c − 1 to 0 do
|
||||
# 3 t ← lT,T (Pj), T ← 2T
|
||||
# 4 if ui = 1 then
|
||||
# 5 t ← t.lT,Qj (Pj), T ← T + Qj
|
||||
# 6 g[i] ← g[i].t
|
||||
# 7 return g
|
||||
#
|
||||
# ------
|
||||
# Aranha
|
||||
#
|
||||
# Algorithm 11.2 Explicit multipairing version of Algorithm 11.1.
|
||||
# (we extract the Miller Loop part only)
|
||||
# Input : P1 , P2 , . . . Pn ∈ G1 ,
|
||||
# Q1 , Q2, . . . Qn ∈ G2
|
||||
# Output: (we focus on the Miller Loop)
|
||||
#
|
||||
# Write l in binary form, l = sum(0 ..< m-1)
|
||||
# f ← 1, l ← abs(AteParam)
|
||||
# for j ← 1 to n do
|
||||
# Tj ← Qj
|
||||
# end
|
||||
#
|
||||
# for i = m-2 down to 0 do
|
||||
# f ← f²
|
||||
# for j ← 1 to n do
|
||||
# f ← f gTj,Tj(Pj), Tj ← [2]Tj
|
||||
# if li = 1 then
|
||||
# f ← f gTj,Qj(Pj), Tj ← Tj + Qj
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
#
|
||||
# -----
|
||||
# Assuming we have N tuples (Pj, Qj) of points j in 0 ..< N
|
||||
# and I operations to do in our Miller loop:
|
||||
# - I = HammingWeight(AteParam) + Bitwidth(AteParam)
|
||||
# - HammingWeight(AteParam) corresponds to line additions
|
||||
# - Bitwidth(AteParam) corresponds to line doublings
|
||||
#
|
||||
# Scott approach is to have:
|
||||
# - I Fp12 accumulators `g`
|
||||
# - 1 G2 accumulator `T`
|
||||
# and then accumulating each (Pj, Qj) into their corresponding `g` accumulator.
|
||||
#
|
||||
# Aranha approach is to have:
|
||||
# - 1 Fp12 accumulator `f`
|
||||
# - N G2 accumulators `T`
|
||||
# and accumulate N points per I.
|
||||
#
|
||||
# Scott approach is fully "online"/"streaming",
|
||||
# while Aranha's saves space.
|
||||
# For BLS12_381,
|
||||
# I = 68 hence we would need 68*12*48 = 39168 bytes (381-bit needs 48 bytes)
|
||||
# G2 has size 3*2*48 = 288 bytes (3 proj coordinates on Fp2)
|
||||
# and we choose N (which can be 1 for single pairing or reverting to Scott approach).
|
||||
#
|
||||
# In actual use, "streaming pairings" are not used, pairings to compute are receive
|
||||
# by batch, for example for blockchain you receive a batch of N blocks to verify from one peer.
|
||||
# Furthermore, 39kB would be over L1 cache size and incurs cache misses.
|
||||
# Additionally Aranha approach would make it easier to batch inversions
|
||||
# using Montgomery's simultaneous inversion technique.
|
||||
# Lastly, while a higher level API will need to store N (Pj, Qj) pairs for multi-pairings
|
||||
# for Aranha approach, it can decide how big N is depending on hardware and/or protocol.
|
||||
#
|
||||
# Regarding optimizations, as the Fp12 accumulator is dense
|
||||
# and lines are sparse (xyz000 or xy000z) Scott mentions the following costs:
|
||||
# - Dense-sparse is 13m
|
||||
# - sparse-sparse is 6m
|
||||
# - Dense-(somewhat sparse) is 17m
|
||||
# Hence when accumulating lines from multiple points:
|
||||
# - 2x Dense-sparse is 26m
|
||||
# - sparse-sparse then Dense-(somewhat sparse) is 23m
|
||||
# a 11.5% speedup
|
||||
#
|
||||
# We can use Aranha approach but process lines function 2-by-2 merging them
|
||||
# before merging them to the dense Fp12 accumulator
|
||||
|
||||
# Miller Loop
|
||||
# -------------------------------------------------------------------------------------------------------
|
||||
|
||||
{.push raises: [].}
|
||||
|
||||
import
|
||||
strutils,
|
||||
../io/io_towers
|
||||
|
||||
func miller_first_iter[N: static int](
|
||||
f: var Fp12[BLS12_381],
|
||||
Ts: var array[N, ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]],
|
||||
Qs: array[N, ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]],
|
||||
Ps: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]]
|
||||
) =
|
||||
## Start a Miller Loop
|
||||
## This means
|
||||
## - 1 doubling
|
||||
## - 1 add
|
||||
##
|
||||
## f is overwritten
|
||||
## Ts are overwritten by Qs
|
||||
static:
|
||||
doAssert N >= 1
|
||||
doAssert f.c0 is Fp4
|
||||
|
||||
{.push checks: off.} # No OverflowError or IndexError allowed
|
||||
var line {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
# First step: T <- Q, f = 1 (mod p¹²), f *= line
|
||||
# ----------------------------------------------
|
||||
for i in 0 ..< N:
|
||||
Ts[i].projectiveFromAffine(Qs[i])
|
||||
|
||||
line.line_double(Ts[0], Ps[0])
|
||||
|
||||
# f *= line <=> f = line for the first iteration
|
||||
# With Fp2 -> Fp4 -> Fp12 towering and a M-Twist
|
||||
# The line corresponds to a sparse xy000z Fp12
|
||||
f.c0.c0 = line.x
|
||||
f.c0.c1 = line.y
|
||||
f.c1.c0.setZero()
|
||||
f.c1.c1.setZero()
|
||||
f.c2.c0.setZero()
|
||||
f.c2.c1 = line.z
|
||||
|
||||
when N >= 2:
|
||||
line.line_double(Ts[1], Ps[1])
|
||||
f.mul_sparse_by_line_xy000z(line) # TODO: sparse-sparse mul
|
||||
|
||||
# Sparse merge 2 by 2, starting from 2
|
||||
for i in countup(2, N-1, 2):
|
||||
# var f2 {.noInit.}: Fp12[BLS12_381] # TODO: sparse-sparse mul
|
||||
var line2 {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
line.line_double(Ts[i], Ps[i])
|
||||
line2.line_double(Ts[i+1], Ps[i+1])
|
||||
|
||||
# f2.mul_sparse_sparse(line, line2)
|
||||
# f.mul_somewhat_sparse(f2)
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
f.mul_sparse_by_line_xy000z(line2)
|
||||
|
||||
when N and 1 == 1: # N >= 2 and N is odd, there is a leftover
|
||||
line.line_double(Ts[N-1], Ps[N-1])
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
|
||||
# 2nd step: Line addition as MSB is always 1
|
||||
# ----------------------------------------------
|
||||
when N >= 2: # f is dense, there are already many lines accumulated
|
||||
# Sparse merge 2 by 2, starting from 0
|
||||
for i in countup(0, N-1, 2):
|
||||
# var f2 {.noInit.}: Fp12[BLS12_381] # TODO: sparse-sparse mul
|
||||
var line2 {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
line.line_add(Ts[i], Qs[i], Ps[i])
|
||||
line2.line_add(Ts[i+1], Qs[i+1], Ps[i+1])
|
||||
|
||||
# f2.mul_sparse_sparse(line, line2)
|
||||
# f.mul_somewhat_sparse(f2)
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
f.mul_sparse_by_line_xy000z(line2)
|
||||
|
||||
when N and 1 == 1: # N >= 2 and N is odd, there is a leftover
|
||||
line.line_add(Ts[N-1], Qs[N-1], Ps[N-1])
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
|
||||
else: # N = 1, f is sparse
|
||||
line.line_add(Ts[0], Qs[0], Ps[0])
|
||||
# f.mul_sparse_sparse(line)
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
|
||||
{.pop.} # No OverflowError or IndexError allowed
|
||||
|
||||
func miller_accum_doublings[N: static int](
|
||||
f: var Fp12[BLS12_381],
|
||||
Ts: var array[N, ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]],
|
||||
Ps: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]],
|
||||
numDoublings: int
|
||||
) =
|
||||
## Accumulate `numDoublings` Miller loop doubling steps into `f`
|
||||
static: doAssert N >= 1
|
||||
{.push checks: off.} # No OverflowError or IndexError allowed
|
||||
|
||||
var line {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
for _ in 0 ..< numDoublings:
|
||||
f.square()
|
||||
when N >= 2:
|
||||
for i in countup(0, N-1, 2):
|
||||
# var f2 {.noInit.}: Fp12[BLS12_381] # TODO: sparse-sparse mul
|
||||
var line2 {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
line.line_double(Ts[i], Ps[i])
|
||||
line2.line_double(Ts[i+1], Ps[i+1])
|
||||
|
||||
# f2.mul_sparse_sparse(line, line2)
|
||||
# f.mul_somewhat_sparse(f2)
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
f.mul_sparse_by_line_xy000z(line2)
|
||||
|
||||
when N and 1 == 1: # N >= 2 and N is odd, there is a leftover
|
||||
line.line_double(Ts[N-1], Ps[N-1])
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
else:
|
||||
line.line_double(Ts[0], Ps[0])
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
|
||||
{.pop.} # No OverflowError or IndexError allowed
|
||||
|
||||
func miller_accum_addition[N: static int](
|
||||
f: var Fp12[BLS12_381],
|
||||
Ts: var array[N, ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]],
|
||||
Qs: array[N, ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]],
|
||||
Ps: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]]
|
||||
) =
|
||||
## Accumulate a Miller loop addition step into `f`
|
||||
static: doAssert N >= 1
|
||||
{.push checks: off.} # No OverflowError or IndexError allowed
|
||||
|
||||
var line {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
when N >= 2:
|
||||
# Sparse merge 2 by 2, starting from 0
|
||||
for i in countup(0, N-1, 2):
|
||||
# var f2 {.noInit.}: Fp12[BLS12_381] # TODO: sparse-sparse mul
|
||||
var line2 {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
line.line_add(Ts[i], Qs[i], Ps[i])
|
||||
line2.line_add(Ts[i+1], Qs[i+1], Ps[i+1])
|
||||
|
||||
# f2.mul_sparse_sparse(line, line2)
|
||||
# f.mul_somewhat_sparse(f2)
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
f.mul_sparse_by_line_xy000z(line2)
|
||||
|
||||
when N and 1 == 1: # N >= 2 and N is odd, there is a leftover
|
||||
line.line_add(Ts[N-1], Qs[N-1], Ps[N-1])
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
|
||||
else:
|
||||
line.line_add(Ts[0], Qs[0], Ps[0])
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
|
||||
{.pop.} # No OverflowError or IndexError allowed
|
||||
|
||||
func millerLoop_opt_BLS12_381*[N: static int](
|
||||
f: var Fp12[BLS12_381],
|
||||
Qs: array[N, ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]],
|
||||
Ps: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]]
|
||||
) {.meter.} =
|
||||
## Generic Miller Loop for BLS12 curve
|
||||
## Computes f{u,Q}(P) with u the BLS curve parameter
|
||||
|
||||
var Ts {.noInit.}: array[N, ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]]
|
||||
|
||||
# Ate param addition chain
|
||||
# Hex: 0xd201000000010000
|
||||
# Bin: 0b1101001000000001000000000000000000000000000000010000000000000000
|
||||
|
||||
var iter = 1'u64
|
||||
|
||||
f.miller_first_iter(Ts, Qs, Ps) # 0b11
|
||||
f.miller_accum_doublings(Ts, Ps, 2) # 0b1100
|
||||
f.miller_accum_addition(Ts, Qs, Ps) # 0b1101
|
||||
f.miller_accum_doublings(Ts, Ps, 3) # 0b1101000
|
||||
f.miller_accum_addition(Ts, Qs, Ps) # 0b1101001
|
||||
f.miller_accum_doublings(Ts, Ps, 9) # 0b1101001000000000
|
||||
f.miller_accum_addition(Ts, Qs, Ps) # 0b1101001000000001
|
||||
f.miller_accum_doublings(Ts, Ps, 32) # 0b110100100000000100000000000000000000000000000000
|
||||
f.miller_accum_addition(Ts, Qs, Ps) # 0b110100100000000100000000000000000000000000000001
|
||||
f.miller_accum_doublings(Ts, Ps, 16) # 0b1101001000000001000000000000000000000000000000010000000000000000
|
||||
|
||||
# TODO: what is the threshold for Karabina's compressed squarings?
|
|
@ -0,0 +1,65 @@
|
|||
# Constantine
|
||||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||||
# Licensed and distributed under either of
|
||||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
import
|
||||
# Standard library
|
||||
std/[os, times, strformat],
|
||||
# Internals
|
||||
../constantine/config/common,
|
||||
../constantine/[
|
||||
arithmetic, primitives,
|
||||
towers, ec_shortweierstrass
|
||||
],
|
||||
../constantine/io/io_towers,
|
||||
../constantine/config/curves,
|
||||
../constantine/pairing/pairing_bls12,
|
||||
# Test utilities
|
||||
../helpers/prng_unsafe
|
||||
|
||||
# Testing multipairing
|
||||
# ----------------------------------------------
|
||||
|
||||
var rng: RngState
|
||||
let timeseed = uint32(toUnix(getTime()) and (1'i64 shl 32 - 1)) # unixTime mod 2^32
|
||||
seed(rng, timeseed)
|
||||
echo "\n------------------------------------------------------\n"
|
||||
echo "test_pairing_bls12_381_multi xoshiro512** seed: ", timeseed
|
||||
|
||||
proc testMultiPairing(rng: var RngState, N: static int) =
|
||||
var
|
||||
Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]]
|
||||
Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]]
|
||||
|
||||
GTs {.noInit.}: array[N, Fp12[BLS12_381]]
|
||||
|
||||
for i in 0 ..< N:
|
||||
Ps[i] = rng.random_unsafe(typeof(Ps[0]))
|
||||
Qs[i] = rng.random_unsafe(typeof(Qs[0]))
|
||||
|
||||
# Simple pairing
|
||||
let clockSimpleStart = cpuTime()
|
||||
var GTsimple {.noInit.}: Fp12[BLS12_381]
|
||||
for i in 0 ..< N:
|
||||
GTs[i].pairing_bls12(Ps[i], Qs[i])
|
||||
|
||||
GTsimple = GTs[0]
|
||||
for i in 1 ..< N:
|
||||
GTsimple *= GTs[i]
|
||||
let clockSimpleStop = cpuTime()
|
||||
|
||||
# Multipairing
|
||||
let clockMultiStart = cpuTime()
|
||||
var GTmulti {.noInit.}: Fp12[BLS12_381]
|
||||
GTmulti.pairing_bls12(Ps, Qs)
|
||||
let clockMultiStop = cpuTime()
|
||||
|
||||
echo &"N={N}, Simple: {clockSimpleStop - clockSimpleStart:>4.4f}s, Multi: {clockMultiStop - clockMultiStart:>4.4f}s"
|
||||
doAssert bool GTsimple == GTmulti
|
||||
|
||||
staticFor i, 1, 17:
|
||||
rng.testMultiPairing(N = i)
|
|
@ -259,7 +259,7 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
|
|||
r.prod(f0, f1)
|
||||
|
||||
var rl: Fp12[C]
|
||||
rl.mul_xy000z_xy000z_into_abcd00efghij(line0, line1)
|
||||
rl.prod_xy000z_xy000z_into_abcd00efghij(line0, line1)
|
||||
|
||||
check: bool(r == rl)
|
||||
|
||||
|
@ -297,7 +297,7 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
|
|||
r.prod(f0, f1)
|
||||
|
||||
var rl: Fp12[C]
|
||||
rl.mul_xyz000_xyz000_into_abcdefghij00(line0, line1)
|
||||
rl.prod_xyz000_xyz000_into_abcdefghij00(line0, line1)
|
||||
|
||||
check: bool(r == rl)
|
||||
|
||||
|
@ -337,7 +337,7 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
|
|||
)
|
||||
|
||||
var rl: Fp12[C]
|
||||
rl.mul_xyz000_xyz000_into_abcdefghij00(line0, line1)
|
||||
rl.prod_xyz000_xyz000_into_abcdefghij00(line0, line1)
|
||||
|
||||
var f = rng.random_elem(Fp12[C], gen)
|
||||
var f2 = f
|
||||
|
@ -383,7 +383,7 @@ suite "Pairing - Sparse 𝔽p12 multiplication by line function is consistent wi
|
|||
)
|
||||
|
||||
var rl: Fp12[C]
|
||||
rl.mul_xy000z_xy000z_into_abcd00efghij(line0, line1)
|
||||
rl.prod_xy000z_xy000z_into_abcd00efghij(line0, line1)
|
||||
|
||||
var f = rng.random_elem(Fp12[C], gen)
|
||||
var f2 = f
|
||||
|
|
|
@ -132,6 +132,37 @@ func verifyG2[T: byte|char](
|
|||
|
||||
return e0 == e1
|
||||
|
||||
func verifyG2_multi[T: byte|char](
|
||||
pubkey: ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist],
|
||||
message: openarray[T],
|
||||
signature: ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]
|
||||
): SecretBool =
|
||||
doAssert not pubkey.isInf.bool
|
||||
doAssert not signature.isInf.bool
|
||||
|
||||
var Qprj {.noInit.}: ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]
|
||||
hashToCurve(
|
||||
H = sha256, k = 128,
|
||||
output = Qprj,
|
||||
augmentation = "",
|
||||
message = message,
|
||||
domainSepTag = DomainSepTag
|
||||
)
|
||||
|
||||
var G2s: array[2, ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]]
|
||||
var G1s: array[2, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]]
|
||||
|
||||
G1s[0] = pubkey
|
||||
G2s[0].affineFromprojective(Qprj)
|
||||
|
||||
G1s[1].neg(BLS12_381_G1_generator)
|
||||
G2s[1] = signature
|
||||
|
||||
var e: Fp12[BLS12_381]
|
||||
e.pairing_bls12(G1s, G2s)
|
||||
|
||||
return e.isOne()
|
||||
|
||||
proc bls_signature_test(rng: var RngState, i: int) =
|
||||
var
|
||||
seckey: Fr[BLS12_381]
|
||||
|
@ -143,8 +174,11 @@ proc bls_signature_test(rng: var RngState, i: int) =
|
|||
pubkey.publicKeyG1(seckey)
|
||||
signature.signG2(message, seckey)
|
||||
|
||||
let ok = pubkey.verifyG2(message, signature)
|
||||
doAssert bool ok
|
||||
let okSingle = pubkey.verifyG2(message, signature)
|
||||
doAssert bool okSingle
|
||||
|
||||
let okMulti = pubkey.verifyG2_multi(message, signature)
|
||||
doAssert bool okMulti
|
||||
|
||||
for i in 0 ..< 500:
|
||||
rng.bls_signature_test(i)
|
||||
|
|
Loading…
Reference in New Issue