[Research] KZG polynomial commit and verify
This commit is contained in:
parent
2242650d38
commit
e9a1ef91fb
|
@ -1,338 +0,0 @@
|
|||
# Constantine
|
||||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||||
# Licensed and distributed under either of
|
||||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||||
|
||||
import
|
||||
../config/[common, curves, type_ff],
|
||||
../towers,
|
||||
../elliptic/[
|
||||
ec_shortweierstrass_affine,
|
||||
ec_shortweierstrass_projective
|
||||
],
|
||||
../curves/zoo_pairings,
|
||||
./lines_projective, ./mul_fp12_by_lines,
|
||||
./miller_loops
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
# Optimal ATE pairing for
|
||||
# BLS12-381
|
||||
#
|
||||
# ############################################################
|
||||
#
|
||||
# - Software Implementation, Algorithm 11.2 & 11.3
|
||||
# Aranha, Dominguez Perez, A. Mrabet, Schwabe,
|
||||
# Guide to Pairing-Based Cryptography, 2015
|
||||
#
|
||||
# - Physical Attacks,
|
||||
# N. El Mrabet, Goubin, Guilley, Fournier, Jauvart, Moreau, Rauzy, Rondepierre,
|
||||
# Guide to Pairing-Based Cryptography, 2015
|
||||
#
|
||||
# - Pairing Implementation Revisited
|
||||
# Mike Scott, 2019
|
||||
# https://eprint.iacr.org/2019/077.pdf
|
||||
#
|
||||
# Fault attacks:
|
||||
# To limite exposure to some fault attacks (flipping bits with a laser on embedded):
|
||||
# - changing the number of Miller loop iterations
|
||||
# - flipping the bits in the Miller loop
|
||||
# we hardcode unrolled addition chains.
|
||||
# This should also contribute to performance.
|
||||
#
|
||||
# Multi-pairing discussion:
|
||||
# Aranha & Scott proposes 2 different approaches for multi-pairing.
|
||||
#
|
||||
# -----
|
||||
# Scott
|
||||
#
|
||||
# Algorithm 2: Calculate and store line functions for BLS12 curve
|
||||
# Input: Q ∈ G2, P ∈ G1 , curve parameter u
|
||||
# Output: An array g of blog2(u)c line functions ∈ Fp12
|
||||
# 1 T ← Q
|
||||
# 2 for i ← ceil(log2(u)) − 1 to 0 do
|
||||
# 3 g[i] ← lT,T(P), T ← 2T
|
||||
# 4 if ui = 1 then
|
||||
# 5 g[i] ← g[i].lT,Q(P), T ← T + Q
|
||||
# 6 return g
|
||||
#
|
||||
# And to accumulate lines from a new (P, Q) tuple of points
|
||||
#
|
||||
# Algorithm 4: Accumulate another set of line functions into g
|
||||
# Input: The array g, Qj ∈ G2 , Pj ∈ G1 , curve parameter u
|
||||
# Output: Updated array g of ceil(log2(u)) line functions ∈ Fp12
|
||||
# 1 T ← Qj
|
||||
# 2 for i ← blog2 (u)c − 1 to 0 do
|
||||
# 3 t ← lT,T (Pj), T ← 2T
|
||||
# 4 if ui = 1 then
|
||||
# 5 t ← t.lT,Qj (Pj), T ← T + Qj
|
||||
# 6 g[i] ← g[i].t
|
||||
# 7 return g
|
||||
#
|
||||
# ------
|
||||
# Aranha
|
||||
#
|
||||
# Algorithm 11.2 Explicit multipairing version of Algorithm 11.1.
|
||||
# (we extract the Miller Loop part only)
|
||||
# Input : P1 , P2 , . . . Pn ∈ G1 ,
|
||||
# Q1 , Q2, . . . Qn ∈ G2
|
||||
# Output: (we focus on the Miller Loop)
|
||||
#
|
||||
# Write l in binary form, l = sum(0 ..< m-1)
|
||||
# f ← 1, l ← abs(AteParam)
|
||||
# for j ← 1 to n do
|
||||
# Tj ← Qj
|
||||
# end
|
||||
#
|
||||
# for i = m-2 down to 0 do
|
||||
# f ← f²
|
||||
# for j ← 1 to n do
|
||||
# f ← f gTj,Tj(Pj), Tj ← [2]Tj
|
||||
# if li = 1 then
|
||||
# f ← f gTj,Qj(Pj), Tj ← Tj + Qj
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
#
|
||||
# -----
|
||||
# Assuming we have N tuples (Pj, Qj) of points j in 0 ..< N
|
||||
# and I operations to do in our Miller loop:
|
||||
# - I = HammingWeight(AteParam) + Bitwidth(AteParam)
|
||||
# - HammingWeight(AteParam) corresponds to line additions
|
||||
# - Bitwidth(AteParam) corresponds to line doublings
|
||||
#
|
||||
# Scott approach is to have:
|
||||
# - I Fp12 accumulators `g`
|
||||
# - 1 G2 accumulator `T`
|
||||
# and then accumulating each (Pj, Qj) into their corresponding `g` accumulator.
|
||||
#
|
||||
# Aranha approach is to have:
|
||||
# - 1 Fp12 accumulator `f`
|
||||
# - N G2 accumulators `T`
|
||||
# and accumulate N points per I.
|
||||
#
|
||||
# Scott approach is fully "online"/"streaming",
|
||||
# while Aranha's saves space.
|
||||
# For BLS12_381,
|
||||
# I = 68 hence we would need 68*12*48 = 39168 bytes (381-bit needs 48 bytes)
|
||||
# G2 has size 3*2*48 = 288 bytes (3 proj coordinates on Fp2)
|
||||
# and we choose N (which can be 1 for single pairing or reverting to Scott approach).
|
||||
#
|
||||
# In actual use, "streaming pairings" are not used, pairings to compute are receive
|
||||
# by batch, for example for blockchain you receive a batch of N blocks to verify from one peer.
|
||||
# Furthermore, 39kB would be over L1 cache size and incurs cache misses.
|
||||
# Additionally Aranha approach would make it easier to batch inversions
|
||||
# using Montgomery's simultaneous inversion technique.
|
||||
# Lastly, while a higher level API will need to store N (Pj, Qj) pairs for multi-pairings
|
||||
# for Aranha approach, it can decide how big N is depending on hardware and/or protocol.
|
||||
#
|
||||
# Regarding optimizations, as the Fp12 accumulator is dense
|
||||
# and lines are sparse (xyz000 or xy000z) Scott mentions the following costs:
|
||||
# - Dense-sparse is 13m
|
||||
# - sparse-sparse is 6m
|
||||
# - Dense-(somewhat sparse) is 17m
|
||||
# Hence when accumulating lines from multiple points:
|
||||
# - 2x Dense-sparse is 26m
|
||||
# - sparse-sparse then Dense-(somewhat sparse) is 23m
|
||||
# a 11.5% speedup
|
||||
#
|
||||
# We can use Aranha approach but process lines function 2-by-2 merging them
|
||||
# before merging them to the dense Fp12 accumulator
|
||||
|
||||
# Miller Loop
|
||||
# -------------------------------------------------------------------------------------------------------
|
||||
|
||||
{.push raises: [].}
|
||||
|
||||
import
|
||||
strutils,
|
||||
../io/io_towers
|
||||
|
||||
func miller_first_iter[N: static int](
|
||||
f: var Fp12[BLS12_381],
|
||||
Ts: var array[N, ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]],
|
||||
Qs: array[N, ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]],
|
||||
Ps: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]]
|
||||
) =
|
||||
## Start a Miller Loop
|
||||
## This means
|
||||
## - 1 doubling
|
||||
## - 1 add
|
||||
##
|
||||
## f is overwritten
|
||||
## Ts are overwritten by Qs
|
||||
static:
|
||||
doAssert N >= 1
|
||||
doAssert f.c0 is Fp4
|
||||
|
||||
{.push checks: off.} # No OverflowError or IndexError allowed
|
||||
var line {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
# First step: T <- Q, f = 1 (mod p¹²), f *= line
|
||||
# ----------------------------------------------
|
||||
for i in 0 ..< N:
|
||||
Ts[i].projectiveFromAffine(Qs[i])
|
||||
|
||||
line.line_double(Ts[0], Ps[0])
|
||||
|
||||
# f *= line <=> f = line for the first iteration
|
||||
# With Fp2 -> Fp4 -> Fp12 towering and a M-Twist
|
||||
# The line corresponds to a sparse xy000z Fp12
|
||||
f.c0.c0 = line.x
|
||||
f.c0.c1 = line.y
|
||||
f.c1.c0.setZero()
|
||||
f.c1.c1.setZero()
|
||||
f.c2.c0.setZero()
|
||||
f.c2.c1 = line.z
|
||||
|
||||
when N >= 2:
|
||||
line.line_double(Ts[1], Ps[1])
|
||||
f.mul_sparse_by_line_xy000z(line) # TODO: sparse-sparse mul
|
||||
|
||||
# Sparse merge 2 by 2, starting from 2
|
||||
for i in countup(2, N-1, 2):
|
||||
# var f2 {.noInit.}: Fp12[BLS12_381] # TODO: sparse-sparse mul
|
||||
var line2 {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
line.line_double(Ts[i], Ps[i])
|
||||
line2.line_double(Ts[i+1], Ps[i+1])
|
||||
|
||||
# f2.mul_sparse_sparse(line, line2)
|
||||
# f.mul_somewhat_sparse(f2)
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
f.mul_sparse_by_line_xy000z(line2)
|
||||
|
||||
when N and 1 == 1: # N >= 2 and N is odd, there is a leftover
|
||||
line.line_double(Ts[N-1], Ps[N-1])
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
|
||||
# 2nd step: Line addition as MSB is always 1
|
||||
# ----------------------------------------------
|
||||
when N >= 2: # f is dense, there are already many lines accumulated
|
||||
# Sparse merge 2 by 2, starting from 0
|
||||
for i in countup(0, N-1, 2):
|
||||
# var f2 {.noInit.}: Fp12[BLS12_381] # TODO: sparse-sparse mul
|
||||
var line2 {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
line.line_add(Ts[i], Qs[i], Ps[i])
|
||||
line2.line_add(Ts[i+1], Qs[i+1], Ps[i+1])
|
||||
|
||||
# f2.mul_sparse_sparse(line, line2)
|
||||
# f.mul_somewhat_sparse(f2)
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
f.mul_sparse_by_line_xy000z(line2)
|
||||
|
||||
when N and 1 == 1: # N >= 2 and N is odd, there is a leftover
|
||||
line.line_add(Ts[N-1], Qs[N-1], Ps[N-1])
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
|
||||
else: # N = 1, f is sparse
|
||||
line.line_add(Ts[0], Qs[0], Ps[0])
|
||||
# f.mul_sparse_sparse(line)
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
|
||||
{.pop.} # No OverflowError or IndexError allowed
|
||||
|
||||
func miller_accum_doublings[N: static int](
|
||||
f: var Fp12[BLS12_381],
|
||||
Ts: var array[N, ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]],
|
||||
Ps: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]],
|
||||
numDoublings: int
|
||||
) =
|
||||
## Accumulate `numDoublings` Miller loop doubling steps into `f`
|
||||
static: doAssert N >= 1
|
||||
{.push checks: off.} # No OverflowError or IndexError allowed
|
||||
|
||||
var line {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
for _ in 0 ..< numDoublings:
|
||||
f.square()
|
||||
when N >= 2:
|
||||
for i in countup(0, N-1, 2):
|
||||
# var f2 {.noInit.}: Fp12[BLS12_381] # TODO: sparse-sparse mul
|
||||
var line2 {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
line.line_double(Ts[i], Ps[i])
|
||||
line2.line_double(Ts[i+1], Ps[i+1])
|
||||
|
||||
# f2.mul_sparse_sparse(line, line2)
|
||||
# f.mul_somewhat_sparse(f2)
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
f.mul_sparse_by_line_xy000z(line2)
|
||||
|
||||
when N and 1 == 1: # N >= 2 and N is odd, there is a leftover
|
||||
line.line_double(Ts[N-1], Ps[N-1])
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
else:
|
||||
line.line_double(Ts[0], Ps[0])
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
|
||||
{.pop.} # No OverflowError or IndexError allowed
|
||||
|
||||
func miller_accum_addition[N: static int](
|
||||
f: var Fp12[BLS12_381],
|
||||
Ts: var array[N, ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]],
|
||||
Qs: array[N, ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]],
|
||||
Ps: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]]
|
||||
) =
|
||||
## Accumulate a Miller loop addition step into `f`
|
||||
static: doAssert N >= 1
|
||||
{.push checks: off.} # No OverflowError or IndexError allowed
|
||||
|
||||
var line {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
when N >= 2:
|
||||
# Sparse merge 2 by 2, starting from 0
|
||||
for i in countup(0, N-1, 2):
|
||||
# var f2 {.noInit.}: Fp12[BLS12_381] # TODO: sparse-sparse mul
|
||||
var line2 {.noInit.}: Line[Fp2[BLS12_381]]
|
||||
|
||||
line.line_add(Ts[i], Qs[i], Ps[i])
|
||||
line2.line_add(Ts[i+1], Qs[i+1], Ps[i+1])
|
||||
|
||||
# f2.mul_sparse_sparse(line, line2)
|
||||
# f.mul_somewhat_sparse(f2)
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
f.mul_sparse_by_line_xy000z(line2)
|
||||
|
||||
when N and 1 == 1: # N >= 2 and N is odd, there is a leftover
|
||||
line.line_add(Ts[N-1], Qs[N-1], Ps[N-1])
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
|
||||
else:
|
||||
line.line_add(Ts[0], Qs[0], Ps[0])
|
||||
f.mul_sparse_by_line_xy000z(line)
|
||||
|
||||
{.pop.} # No OverflowError or IndexError allowed
|
||||
|
||||
func millerLoop_opt_BLS12_381*[N: static int](
|
||||
f: var Fp12[BLS12_381],
|
||||
Qs: array[N, ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]],
|
||||
Ps: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]]
|
||||
) {.meter.} =
|
||||
## Generic Miller Loop for BLS12 curve
|
||||
## Computes f{u,Q}(P) with u the BLS curve parameter
|
||||
|
||||
var Ts {.noInit.}: array[N, ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]]
|
||||
|
||||
# Ate param addition chain
|
||||
# Hex: 0xd201000000010000
|
||||
# Bin: 0b1101001000000001000000000000000000000000000000010000000000000000
|
||||
|
||||
var iter = 1'u64
|
||||
|
||||
f.miller_first_iter(Ts, Qs, Ps) # 0b11
|
||||
f.miller_accum_doublings(Ts, Ps, 2) # 0b1100
|
||||
f.miller_accum_addition(Ts, Qs, Ps) # 0b1101
|
||||
f.miller_accum_doublings(Ts, Ps, 3) # 0b1101000
|
||||
f.miller_accum_addition(Ts, Qs, Ps) # 0b1101001
|
||||
f.miller_accum_doublings(Ts, Ps, 9) # 0b1101001000000000
|
||||
f.miller_accum_addition(Ts, Qs, Ps) # 0b1101001000000001
|
||||
f.miller_accum_doublings(Ts, Ps, 32) # 0b110100100000000100000000000000000000000000000000
|
||||
f.miller_accum_addition(Ts, Qs, Ps) # 0b110100100000000100000000000000000000000000000001
|
||||
f.miller_accum_doublings(Ts, Ps, 16) # 0b1101001000000001000000000000000000000000000000010000000000000000
|
||||
|
||||
# TODO: what is the threshold for Karabina's compressed squarings?
|
|
@ -56,7 +56,7 @@ type
|
|||
FFTS_TooManyValues = "Input length greater than the field 2-adicity (number of roots of unity)"
|
||||
FFTS_SizeNotPowerOfTwo = "Input must be of a power of 2 length"
|
||||
|
||||
FFTDescriptor[F] = object
|
||||
FFTDescriptor*[F] = object
|
||||
## Metadata for FFT on field F
|
||||
maxWidth: int
|
||||
rootOfUnity: F
|
||||
|
|
|
@ -62,7 +62,7 @@ type
|
|||
FFTS_TooManyValues = "Input length greater than the field 2-adicity (number of roots of unity)"
|
||||
FFTS_SizeNotPowerOfTwo = "Input must be of a power of 2 length"
|
||||
|
||||
FFTDescriptor[EC] = object
|
||||
FFTDescriptor*[EC] = object
|
||||
## Metadata for FFT on Elliptic Curve
|
||||
maxWidth: int
|
||||
rootOfUnity: matchingOrderBigInt(EC.F.C)
|
||||
|
|
|
@ -0,0 +1,82 @@
|
|||
# https://github.com/ethereum/research/blob/master/kzg_data_availability/kzg_proofs.py
|
||||
|
||||
import
|
||||
../../constantine/config/curves,
|
||||
../../constantine/[arithmetic, primitives, towers],
|
||||
../../constantine/elliptic/[
|
||||
ec_scalar_mul,
|
||||
ec_shortweierstrass_affine,
|
||||
ec_shortweierstrass_projective,
|
||||
],
|
||||
../../constantine/io/[io_fields, io_ec],
|
||||
../../constantine/pairing/[
|
||||
pairing_bls12,
|
||||
miller_loops
|
||||
],
|
||||
# Research
|
||||
./polynomials,
|
||||
./fft_fr
|
||||
|
||||
type
|
||||
G1 = ECP_ShortW_Prj[Fp[BLS12_381], NotOnTwist]
|
||||
G2 = ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]
|
||||
|
||||
KZGDescriptor = object
|
||||
fftDesc: FFTDescriptor[Fr[BLS12_381]]
|
||||
# [b.multiply(b.G1, pow(s, i, MODULUS)) for i in range(WIDTH+1)]
|
||||
secretG1: seq[G1]
|
||||
extendedSecretG1: seq[G1]
|
||||
# [b.multiply(b.G2, pow(s, i, MODULUS)) for i in range(WIDTH+1)]
|
||||
secretG2: seq[G2]
|
||||
|
||||
var Generator1: ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]
|
||||
doAssert Generator1.fromHex(
|
||||
"0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bb",
|
||||
"0x08b3f481e3aaa0f1a09e30ed741d8ae4fcf5e095d5d00af600db18cb2c04b3edd03cc744a2888ae40caa232946c5e7e1"
|
||||
)
|
||||
|
||||
var Generator2: ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]
|
||||
doAssert Generator2.fromHex(
|
||||
"0x024aa2b2f08f0a91260805272dc51051c6e47ad4fa403b02b4510b647ae3d1770bac0326a805bbefd48056c8c121bdb8",
|
||||
"0x13e02b6052719f607dacd3a088274f65596bd0d09920b61ab5da61bbdc7f5049334cf11213945d57e5ac7d055d042b7e",
|
||||
"0x0ce5d527727d6e118cc9cdc6da2e351aadfd9baa8cbdd3a76d429a695160d12c923ac9cc3baca289e193548608b82801",
|
||||
"0x0606c4a02ea734cc32acd2b02bc28b99cb3e287e85a763af267492ab572e99ab3f370d275cec1da1aaa9075ff05f79be"
|
||||
)
|
||||
|
||||
func init(
|
||||
T: type KZGDescriptor,
|
||||
fftDesc: FFTDescriptor[Fr[BLS12_381]],
|
||||
secretG1: seq[G1], secretG2: seq[G2]
|
||||
): T =
|
||||
result.fftDesc = fftDesc
|
||||
result.secretG1 = secretG1
|
||||
result.secretG2 = secretG2
|
||||
|
||||
func commitToPoly(kzg: KZGDescriptor, r: var G1, poly: openarray[Fr[BLS12_381]]) =
|
||||
## KZG commitment to polynomial in coefficient form
|
||||
r.linear_combination(kzg.secretG1, poly)
|
||||
|
||||
proc checkProofSingle(
|
||||
kzg: KZGDescriptor,
|
||||
commitment: G1,
|
||||
proof: G1,
|
||||
x, y: Fr[BLS12_381]
|
||||
): bool =
|
||||
## Check a proof for a Kate commitment for an evaluation f(x) = y
|
||||
var xG2, g2: G2
|
||||
g2.projectiveFromAffine(Generator2)
|
||||
xG2 = g2
|
||||
xG2.scalarMul(x.toBig())
|
||||
|
||||
var s_minus_x: G2 # s is a secret coefficient from the trusted setup (? to be confirmed)
|
||||
s_minus_x.diff(kzg.secretG2[1], xG2)
|
||||
|
||||
var yG1: G1
|
||||
yG1.projectiveFromAffine(Generator1)
|
||||
yG1.scalarMul(y.toBig())
|
||||
|
||||
var commitment_minus_y: G1
|
||||
commitment_minus_y.diff(commitment, yG1)
|
||||
|
||||
# Verify that e(commitment - [y]G1, Generator2) == e(proof, s - [x]G2)
|
||||
return pair_verify(commitment_minus_y, g2, proof, s_minus_x)
|
|
@ -1,14 +1,16 @@
|
|||
import
|
||||
../../constantine/config/curves,
|
||||
../../constantine/[arithmetic, primitives],
|
||||
../../constantine/[arithmetic, primitives, towers],
|
||||
../../constantine/elliptic/[
|
||||
ec_scalar_mul,
|
||||
ec_shortweierstrass_affine,
|
||||
ec_shortweierstrass_projective,
|
||||
],
|
||||
../../constantine/io/[io_fields, io_ec],
|
||||
../../constantine/pairings/[
|
||||
pairings_bls12,
|
||||
miller_loops
|
||||
../../constantine/pairing/[
|
||||
pairing_bls12,
|
||||
miller_loops,
|
||||
cyclotomic_fp12
|
||||
]
|
||||
|
||||
type
|
||||
|
@ -19,7 +21,7 @@ type
|
|||
GT = Fp12[BLS12_381]
|
||||
|
||||
func linear_combination*(
|
||||
r: var ,
|
||||
r: var G1,
|
||||
points: openarray[G1],
|
||||
coefs: openarray[Fr[BLS12_381]]
|
||||
) =
|
||||
|
@ -63,5 +65,7 @@ func pair_verify*(
|
|||
gt2.millerLoopAddchain(Q2a, P2a)
|
||||
|
||||
gt1 *= gt2
|
||||
gt.finalExpEasy()
|
||||
gt.finalExpHard_BLS12()
|
||||
gt1.finalExpEasy()
|
||||
gt1.finalExpHard_BLS12()
|
||||
|
||||
return gt1.isOne().bool()
|
||||
|
|
Loading…
Reference in New Issue