SHA256 Hash function

This commit is contained in:
Mamy André-Ratsimbazafy 2020-12-15 19:18:36 +01:00
parent c89c78d2d9
commit e89429e822
No known key found for this signature in database
GPG Key ID: 7B88AD1FE79492E1
11 changed files with 817 additions and 376 deletions

View File

@ -0,0 +1,108 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Benchmark blueprint
#
# ############################################################
import
# Internal
../constantine/config/common,
# Helpers
../helpers/[prng_unsafe, static_for],
./platforms,
# Standard library
std/[monotimes, times, strformat, strutils, macros]
export strformat, platforms, times, monotimes, macros
var rng*: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "bench xoshiro512** seed: ", seed
# warmup
proc warmup*() =
# Warmup - make sure cpu is on max perf
let start = cpuTime()
var foo = 123
for i in 0 ..< 300_000_000:
foo += i*i mod 456
foo = foo mod 789
# Compiler shouldn't optimize away the results as cpuTime rely on sideeffects
let stop = cpuTime()
echo &"Warmup: {stop - start:>4.4f} s, result {foo} (displayed to avoid compiler optimizing warmup away)\n"
warmup()
when defined(gcc):
echo "\nCompiled with GCC"
elif defined(clang):
echo "\nCompiled with Clang"
elif defined(vcc):
echo "\nCompiled with MSVC"
elif defined(icc):
echo "\nCompiled with ICC"
else:
echo "\nCompiled with an unknown compiler"
echo "Optimization level => "
echo " no optimization: ", not defined(release)
echo " release: ", defined(release)
echo " danger: ", defined(danger)
echo " inline assembly: ", UseASM_X86_64
when (sizeof(int) == 4) or defined(Constantine32):
echo "⚠️ Warning: using Constantine with 32-bit limbs"
else:
echo "Using Constantine with 64-bit limbs"
when SupportsCPUName:
echo "Running on ", cpuName(), ""
when SupportsGetTicks:
echo "\n⚠️ Cycles measurements are approximate and use the CPU nominal clock: Turbo-Boost and overclocking will skew them."
echo "i.e. a 20% overclock will be about 20% off (assuming no dynamic frequency scaling)"
echo "\n=================================================================================================================\n"
proc separator*(length: int) =
echo "-".repeat(length)
proc notes*() =
echo "Notes:"
echo " - Compilers:"
echo " Compilers are severely limited on multiprecision arithmetic."
echo " Constantine compile-time assembler is used by default (nimble bench_fp)."
echo " GCC is significantly slower than Clang on multiprecision arithmetic due to catastrophic handling of carries."
echo " GCC also seems to have issues with large temporaries and register spilling."
echo " This is somewhat alleviated by Constantine compile-time assembler."
echo " Bench on specific compiler with assembler: \"nimble bench_ec_g1_gcc\" or \"nimble bench_ec_g1_clang\"."
echo " Bench on specific compiler with assembler: \"nimble bench_ec_g1_gcc_noasm\" or \"nimble bench_ec_g1_clang_noasm\"."
echo " - The simplest operations might be optimized away by the compiler."
echo " - Fast Squaring and Fast Multiplication are possible if there are spare bits in the prime representation (i.e. the prime uses 254 bits out of 256 bits)"
template measure*(iters: int,
startTime, stopTime: untyped,
startClk, stopClk: untyped,
body: untyped): untyped =
let startTime = getMonotime()
when SupportsGetTicks:
let startClk = getTicks()
for _ in 0 ..< iters:
body
when SupportsGetTicks:
let stopClk = getTicks()
let stopTime = getMonotime()
when not SupportsGetTicks:
let startClk = -1'i64
let stopClk = -1'i64

View File

@ -21,85 +21,12 @@ import
# Helpers
../helpers/[prng_unsafe, static_for],
./platforms,
# Standard library
std/[monotimes, times, strformat, strutils, macros],
./bench_blueprint,
# Reference unsafe scalar multiplication
../tests/support/ec_reference_scalar_mult
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "bench xoshiro512** seed: ", seed
# warmup
proc warmup*() =
# Warmup - make sure cpu is on max perf
let start = cpuTime()
var foo = 123
for i in 0 ..< 300_000_000:
foo += i*i mod 456
foo = foo mod 789
# Compiler shouldn't optimize away the results as cpuTime rely on sideeffects
let stop = cpuTime()
echo &"Warmup: {stop - start:>4.4f} s, result {foo} (displayed to avoid compiler optimizing warmup away)\n"
warmup()
when defined(gcc):
echo "\nCompiled with GCC"
elif defined(clang):
echo "\nCompiled with Clang"
elif defined(vcc):
echo "\nCompiled with MSVC"
elif defined(icc):
echo "\nCompiled with ICC"
else:
echo "\nCompiled with an unknown compiler"
echo "Optimization level => "
echo " no optimization: ", not defined(release)
echo " release: ", defined(release)
echo " danger: ", defined(danger)
echo " inline assembly: ", UseASM_X86_64
when (sizeof(int) == 4) or defined(Constantine32):
echo "⚠️ Warning: using Constantine with 32-bit limbs"
else:
echo "Using Constantine with 64-bit limbs"
when SupportsCPUName:
echo "Running on ", cpuName(), ""
when SupportsGetTicks:
echo "\n⚠️ Cycles measurements are approximate and use the CPU nominal clock: Turbo-Boost and overclocking will skew them."
echo "i.e. a 20% overclock will be about 20% off (assuming no dynamic frequency scaling)"
echo "\n=================================================================================================================\n"
proc separator*() =
echo "-".repeat(177)
proc report(op, elliptic: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) =
let ns = inNanoseconds((stop-start) div iters)
let throughput = 1e9 / float64(ns)
when SupportsGetTicks:
echo &"{op:<60} {elliptic:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)"
else:
echo &"{op:<60} {elliptic:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op"
proc notes*() =
echo "Notes:"
echo " - Compilers:"
echo " Compilers are severely limited on multiprecision arithmetic."
echo " Constantine compile-time assembler is used by default (nimble bench_fp)."
echo " GCC is significantly slower than Clang on multiprecision arithmetic due to catastrophic handling of carries."
echo " GCC also seems to have issues with large temporaries and register spilling."
echo " This is somewhat alleviated by Constantine compile-time assembler."
echo " Bench on specific compiler with assembler: \"nimble bench_ec_g1_gcc\" or \"nimble bench_ec_g1_clang\"."
echo " Bench on specific compiler with assembler: \"nimble bench_ec_g1_gcc_noasm\" or \"nimble bench_ec_g1_clang_noasm\"."
echo " - The simplest operations might be optimized away by the compiler."
echo " - Fast Squaring and Fast Multiplication are possible if there are spare bits in the prime representation (i.e. the prime uses 254 bits out of 256 bits)"
export notes
proc separator*() = separator(177)
macro fixEllipticDisplay(T: typedesc): untyped =
# At compile-time, enums are integers and their display is buggy
@ -111,21 +38,17 @@ macro fixEllipticDisplay(T: typedesc): untyped =
name.add "[" & fieldName & "[" & curveName & "]]"
result = newLit name
proc report(op, elliptic: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) =
let ns = inNanoseconds((stop-start) div iters)
let throughput = 1e9 / float64(ns)
when SupportsGetTicks:
echo &"{op:<60} {elliptic:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)"
else:
echo &"{op:<60} {elliptic:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op"
template bench(op: string, T: typedesc, iters: int, body: untyped): untyped =
let start = getMonotime()
when SupportsGetTicks:
let startClk = getTicks()
for _ in 0 ..< iters:
body
when SupportsGetTicks:
let stopClk = getTicks()
let stop = getMonotime()
when not SupportsGetTicks:
let startClk = -1'i64
let stopClk = -1'i64
report(op, fixEllipticDisplay(T), start, stop, startClk, stopClk, iters)
measure(iters, startTime, stopTime, startClk, stopClk, body)
report(op, fixEllipticDisplay(T), startTime, stopTime, startClk, stopClk, iters)
proc addBench*(T: typedesc, iters: int) =
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"

View File

@ -19,63 +19,10 @@ import
../constantine/towers,
# Helpers
../helpers/[prng_unsafe, static_for],
./platforms,
# Standard library
std/[monotimes, times, strformat, strutils, macros]
./bench_blueprint
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "bench xoshiro512** seed: ", seed
# warmup
proc warmup*() =
# Warmup - make sure cpu is on max perf
let start = cpuTime()
var foo = 123
for i in 0 ..< 300_000_000:
foo += i*i mod 456
foo = foo mod 789
# Compiler shouldn't optimize away the results as cpuTime rely on sideeffects
let stop = cpuTime()
echo &"Warmup: {stop - start:>4.4f} s, result {foo} (displayed to avoid compiler optimizing warmup away)\n"
warmup()
when defined(gcc):
echo "\nCompiled with GCC"
elif defined(clang):
echo "\nCompiled with Clang"
elif defined(vcc):
echo "\nCompiled with MSVC"
elif defined(icc):
echo "\nCompiled with ICC"
else:
echo "\nCompiled with an unknown compiler"
echo "Optimization level => "
echo " no optimization: ", not defined(release)
echo " release: ", defined(release)
echo " danger: ", defined(danger)
echo " inline assembly: ", UseASM_X86_64
when (sizeof(int) == 4) or defined(Constantine32):
echo "⚠️ Warning: using Constantine with 32-bit limbs"
else:
echo "Using Constantine with 64-bit limbs"
when SupportsCPUName:
echo "Running on ", cpuName(), ""
when SupportsGetTicks:
echo "\n⚠️ Cycles measurements are approximate and use the CPU nominal clock: Turbo-Boost and overclocking will skew them."
echo "i.e. a 20% overclock will be about 20% off (assuming no dynamic frequency scaling)"
echo "\n=================================================================================================================\n"
proc separator*() =
echo "-".repeat(145)
export notes
proc separator*() = separator(145)
proc report(op, field: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) =
let ns = inNanoseconds((stop-start) div iters)
@ -85,19 +32,6 @@ proc report(op, field: string, start, stop: MonoTime, startClk, stopClk: int64,
else:
echo &"{op:<50} {field:<18} {throughput:>15.3f} ops/s {ns:>9} ns/op"
proc notes*() =
echo "Notes:"
echo " - Compilers:"
echo " Compilers are severely limited on multiprecision arithmetic."
echo " Constantine compile-time assembler is used by default (nimble bench_fp)."
echo " GCC is significantly slower than Clang on multiprecision arithmetic due to catastrophic handling of carries."
echo " GCC also seems to have issues with large temporaries and register spilling."
echo " This is somewhat alleviated by Constantine compile-time assembler."
echo " Bench on specific compiler with assembler: \"nimble bench_fp_gcc\" or \"nimble bench_fp_clang\"."
echo " Bench on specific compiler with assembler: \"nimble bench_fp_gcc_noasm\" or \"nimble bench_fp_clang_noasm\"."
echo " - The simplest operations might be optimized away by the compiler."
echo " - Fast Squaring and Fast Multiplication are possible if there are spare bits in the prime representation (i.e. the prime uses 254 bits out of 256 bits)"
macro fixFieldDisplay(T: typedesc): untyped =
# At compile-time, enums are integers and their display is buggy
# we get the Curve ID instead of the curve name.
@ -107,20 +41,8 @@ macro fixFieldDisplay(T: typedesc): untyped =
result = newLit name
template bench(op: string, T: typedesc, iters: int, body: untyped): untyped =
let start = getMonotime()
when SupportsGetTicks:
let startClk = getTicks()
for _ in 0 ..< iters:
body
when SupportsGetTicks:
let stopClk = getTicks()
let stop = getMonotime()
when not SupportsGetTicks:
let startClk = -1'i64
let stopClk = -1'i64
report(op, fixFieldDisplay(T), start, stop, startClk, stopClk, iters)
measure(iters, startTime, stopTime, startClk, stopClk, body)
report(op, fixFieldDisplay(T), startTime, stopTime, startClk, stopClk, iters)
proc addBench*(T: typedesc, iters: int) =
var x = rng.random_unsafe(T)

View File

@ -28,101 +28,23 @@ import
pairing_bn
],
# Helpers
../helpers/[prng_unsafe, static_for],
./platforms,
# Standard library
std/[monotimes, times, strformat, strutils, macros]
../helpers/prng_unsafe,
./bench_blueprint
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "bench xoshiro512** seed: ", seed
export notes
proc separator*() = separator(177)
# warmup
proc warmup*() =
# Warmup - make sure cpu is on max perf
let start = cpuTime()
var foo = 123
for i in 0 ..< 300_000_000:
foo += i*i mod 456
foo = foo mod 789
# Compiler shouldn't optimize away the results as cpuTime rely on sideeffects
let stop = cpuTime()
echo &"Warmup: {stop - start:>4.4f} s, result {foo} (displayed to avoid compiler optimizing warmup away)\n"
warmup()
when defined(gcc):
echo "\nCompiled with GCC"
elif defined(clang):
echo "\nCompiled with Clang"
elif defined(vcc):
echo "\nCompiled with MSVC"
elif defined(icc):
echo "\nCompiled with ICC"
else:
echo "\nCompiled with an unknown compiler"
echo "Optimization level => "
echo " no optimization: ", not defined(release)
echo " release: ", defined(release)
echo " danger: ", defined(danger)
echo " inline assembly: ", UseASM_X86_64
when (sizeof(int) == 4) or defined(Constantine32):
echo "⚠️ Warning: using Constantine with 32-bit limbs"
else:
echo "Using Constantine with 64-bit limbs"
when SupportsCPUName:
echo "Running on ", cpuName(), ""
when SupportsGetTicks:
echo "\n⚠️ Cycles measurements are approximate and use the CPU nominal clock: Turbo-Boost and overclocking will skew them."
echo "i.e. a 20% overclock will be about 20% off (assuming no dynamic frequency scaling)"
echo "\n=================================================================================================================\n"
proc separator*() =
echo "-".repeat(177)
proc report(op, curve: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) =
let ns = inNanoseconds((stop-start) div iters)
proc report(op, curve: string, startTime, stopTime: MonoTime, startClk, stopClk: int64, iters: int) =
let ns = inNanoseconds((stopTime-startTime) div iters)
let throughput = 1e9 / float64(ns)
when SupportsGetTicks:
echo &"{op:<60} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)"
else:
echo &"{op:<60} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op"
proc notes*() =
echo "Notes:"
echo " - Compilers:"
echo " Compilers are severely limited on multiprecision arithmetic."
echo " Constantine compile-time assembler is used by default (nimble bench_fp)."
echo " GCC is significantly slower than Clang on multiprecision arithmetic due to catastrophic handling of carries."
echo " GCC also seems to have issues with large temporaries and register spilling."
echo " This is somewhat alleviated by Constantine compile-time assembler."
echo " Bench on specific compiler with assembler: \"nimble bench_ec_g1_gcc\" or \"nimble bench_ec_g1_clang\"."
echo " Bench on specific compiler with assembler: \"nimble bench_ec_g1_gcc_noasm\" or \"nimble bench_ec_g1_clang_noasm\"."
echo " - The simplest operations might be optimized away by the compiler."
echo " - Fast Squaring and Fast Multiplication are possible if there are spare bits in the prime representation (i.e. the prime uses 254 bits out of 256 bits)"
template bench(op: string, C: static Curve, iters: int, body: untyped): untyped =
let start = getMonotime()
when SupportsGetTicks:
let startClk = getTicks()
for _ in 0 ..< iters:
body
when SupportsGetTicks:
let stopClk = getTicks()
let stop = getMonotime()
when not SupportsGetTicks:
let startClk = -1'i64
let stopClk = -1'i64
report(op, $C, start, stop, startClk, stopClk, iters)
measure(iters, startTime, stopTime, startClk, stopClk, body)
report(op, $C, startTime, stopTime, startClk, stopClk, iters)
func random_point*(rng: var RngState, EC: typedesc): EC {.noInit.} =
result = rng.random_unsafe(EC)

View File

@ -0,0 +1,58 @@
import
# Internals
../constantine/hashes/h_sha256,
# Helpers
../helpers/prng_unsafe,
./bench_blueprint
proc separator*() = separator(69)
proc SHA256[T: byte|char](
msg: openarray[T],
digest: ptr array[32, byte] = nil
): ptr array[32, byte] {.cdecl, dynlib: "libssl.so", importc.}
proc SHA256_OpenSSL[T: byte|char](
digest: var array[32, byte],
s: openarray[T]) =
discard SHA256(s, digest.addr)
proc report(op: string, bytes: int, startTime, stopTime: MonoTime, startClk, stopClk: int64, iters: int) =
let ns = inNanoseconds((stopTime-startTime) div iters)
let throughput = 1e9 / float64(ns)
when SupportsGetTicks:
let cycles = (stopClk - startClk) div iters
let cyclePerByte = cycles.float64 / bytes.float64
echo &"{op:<30} {throughput:>15.3f} ops/s {ns:>9} ns/op {cycles:>10} cycles {cyclePerByte:>5.2f} cycles/byte"
else:
echo &"{op:<30} {throughput:>15.3f} ops/s {ns:>9} ns/op"
template bench(op: string, bytes: int, iters: int, body: untyped): untyped =
measure(iters, startTime, stopTime, startClk, stopClk, body)
report(op, bytes, startTime, stopTime, startClk, stopClk, iters)
proc benchSHA256_constantine[T](msg: openarray[T], msgComment: string, iters: int) =
var digest: array[32, byte]
bench("SHA256 - Constantine - " & msgComment, msg.len, iters):
sha256.hash(digest, msg)
proc benchSHA256_openssl[T](msg: openarray[T], msgComment: string, iters: int) =
var digest: array[32, byte]
bench("SHA256 - OpenSSL - " & msgComment, msg.len, iters):
SHA256_OpenSSL(digest, msg)
when isMainModule:
proc main() =
block:
let msg128B = rng.random_byte_seq(128)
benchSHA256_constantine(msg128B, "128B", 128)
benchSHA256_openssl(msg128B, "128B", 128)
block:
let msg5MB = rng.random_byte_seq(5_000_000)
benchSHA256_constantine(msg5MB, "5MB", 16)
benchSHA256_openssl(msg5MB, "5MB", 16)
block:
let msg100MB = rng.random_byte_seq(100_000_000)
benchSHA256_constantine(msg100MB, "100MB", 3)
benchSHA256_openssl(msg100MB, "100MB", 3)
main()

View File

@ -129,17 +129,40 @@ const testDesc: seq[tuple[path: string, useGMP: bool]] = @[
("tests/t_pairing_bn254_snarks_optate.nim", false),
("tests/t_pairing_bls12_377_optate.nim", false),
("tests/t_pairing_bls12_381_optate.nim", false),
# Hashing vs OpenSSL
("tests/t_hash_sha256_vs_openssl.nim", true),
]
# For temporary (hopefully) investigation that can only be reproduced in CI
const useDebug = [
"tests/t_bigints.nim"
"tests/t_bigints.nim",
"tests/t_hash_sha256_vs_openssl.nim",
]
# Tests that uses sequences require Nim GC, stack scanning and nil pointer passed to openarray
# In particular the tests that uses the json test vectors, don't sanitize them.
# we do use gc:none to help
const skipSanitizers = [
"tests/t_ec_sage_bn254_nogami.nim",
"tests/t_ec_sage_bn254_snarks.nim",
"tests/t_ec_sage_bls12_377.nim",
"tests/t_ec_sage_bls12_381.nim",
]
const sanitizers =
" --passC:-fsanitize=undefined --passL:-fsanitize=undefined" &
" --passC:-fno-sanitize-recover" & # Enforce crash on undefined behaviour
" --gc:none" # The conservative stack scanning of Nim default GC triggers, alignment UB and stack-buffer-overflow check.
# " --passC:-fsanitize=address --passL:-fsanitize=address" & # Requires too much stack for the inline assembly
# Helper functions
# ----------------------------------------------------------------
proc clearParallelBuild() =
exec "> " & buildParallel
proc test(flags, path: string, commandFile = false) =
# commandFile should be a "file" but Nimscript doesn't support IO
if not dirExists "build":
@ -153,6 +176,7 @@ proc test(flags, path: string, commandFile = false) =
if existsEnv"CC":
cc = " --cc:" & getEnv"CC"
var flags = flags & " --passC:-fstack-protector-all"
let command = "nim " & lang & cc & " " & flags &
" --verbosity:0 --outdir:build/testsuite -r --hints:off --warnings:off " &
" --nimcache:nimcache/" & path & " " &
@ -164,7 +188,6 @@ proc test(flags, path: string, commandFile = false) =
echo "=============================================================================================="
exec command
else:
# commandFile.writeLine command
exec "echo \'" & command & "\' >> " & buildParallel
proc runBench(benchName: string, compiler = "", useAsm = true) =
@ -181,24 +204,29 @@ proc runBench(benchName: string, compiler = "", useAsm = true) =
" --nimcache:nimcache/" & benchName & "_" & compiler & "_" & (if useAsm: "useASM" else: "noASM") &
" -r --hints:off --warnings:off benchmarks/" & benchName & ".nim"
proc runTests(requireGMP: bool, dumpCmdFile = false, test32bit = false, testASM = true) =
for td in testDesc:
if not(td.useGMP and not requireGMP):
var flags = ""
if not testASM:
flags &= " -d:ConstantineASM=false"
if test32bit:
flags &= " -d:Constantine32"
if td.path in useDebug:
flags &= " -d:debugConstantine"
if td.path notin skipSanitizers:
flags &= sanitizers
test flags, td.path, dumpCmdFile
# Tasks
# ----------------------------------------------------------------
task test, "Run all tests":
# -d:testingCurves is configured in a *.nim.cfg for convenience
for td in testDesc:
if td.path in useDebug:
test "-d:debugConstantine", td.path
else:
test "", td.path
runTests(requireGMP = true)
# if sizeof(int) == 8: # 32-bit tests on 64-bit arch
# for td in testDesc:
# if td.path in useDebug:
# test "-d:Constantine32 -d:debugConstantine", td.path
# else:
# test "-d:Constantine32", td.path
# runTests(requireGMP = true, test32bit = true)
# Ensure benchmarks stay relevant. Ignore Windows 32-bit at the moment
if not defined(windows) or not (existsEnv"UCPU" or getEnv"UCPU" == "i686"):
@ -213,23 +241,14 @@ task test, "Run all tests":
runBench("bench_pairing_bls12_381")
runBench("bench_pairing_bn254_nogami")
runBench("bench_pairing_bn254_snarks")
runBench("bench_sha256")
task test_no_gmp, "Run tests that don't require GMP":
# -d:testingCurves is configured in a *.nim.cfg for convenience
for td in testDesc:
if not td.useGMP:
if td.path in useDebug:
test "-d:debugConstantine", td.path
else:
test "", td.path
runTests(requireGMP = false)
if sizeof(int) == 8: # 32-bit tests on 64-bit arch
for td in testDesc:
if not td.useGMP:
if td.path in useDebug:
test "-d:Constantine32 -d:debugConstantine", td.path
else:
test "-d:Constantine32", td.path
# if sizeof(int) == 8: # 32-bit tests on 64-bit arch
# runTests(requireGMP = true, test32bit = true)
# Ensure benchmarks stay relevant. Ignore Windows 32-bit at the moment
if not defined(windows) or not (existsEnv"UCPU" or getEnv"UCPU" == "i686"):
@ -243,31 +262,17 @@ task test_no_gmp, "Run tests that don't require GMP":
runBench("bench_pairing_bls12_381")
runBench("bench_pairing_bn254_nogami")
runBench("bench_pairing_bn254_snarks")
runBench("bench_sha256")
task test_parallel, "Run all tests in parallel (via GNU parallel)":
# -d:testingCurves is configured in a *.nim.cfg for convenience
let cmdFile = true # open(buildParallel, mode = fmWrite) # Nimscript doesn't support IO :/
exec "> " & buildParallel
for td in testDesc:
if td.path in useDebug:
test "-d:debugConstantine", td.path, cmdFile
else:
test "", td.path, cmdFile
# cmdFile.close()
# Execute everything in parallel with GNU parallel
clearParallelBuild()
runTests(requireGMP = true, dumpCmdFile = true)
exec "parallel --keep-order --group < " & buildParallel
exec "> " & buildParallel
if sizeof(int) == 8: # 32-bit tests on 64-bit arch
for td in testDesc:
if td.path in useDebug:
test "-d:Constantine32 -d:debugConstantine", td.path, cmdFile
else:
test "-d:Constantine32", td.path, cmdFile
# cmdFile.close()
# Execute everything in parallel with GNU parallel
clearParallelBuild()
runTests(requireGMP = true, dumpCmdFile = true, test32bit = true)
exec "parallel --keep-order --group < " & buildParallel
# Now run the benchmarks
@ -286,31 +291,18 @@ task test_parallel, "Run all tests in parallel (via GNU parallel)":
runBench("bench_pairing_bls12_381")
runBench("bench_pairing_bn254_nogami")
runBench("bench_pairing_bn254_snarks")
runBench("bench_sha256")
task test_parallel_no_assembler, "Run all tests (without macro assembler) in parallel (via GNU parallel)":
# -d:testingCurves is configured in a *.nim.cfg for convenience
let cmdFile = true # open(buildParallel, mode = fmWrite) # Nimscript doesn't support IO :/
exec "> " & buildParallel
for td in testDesc:
if td.path in useDebug:
test "-d:debugConstantine -d:ConstantineASM=false", td.path, cmdFile
else:
test " -d:ConstantineASM=false", td.path, cmdFile
# cmdFile.close()
# Execute everything in parallel with GNU parallel
clearParallelBuild()
runTests(requireGMP = true, dumpCmdFile = true, testASM = false)
exec "parallel --keep-order --group < " & buildParallel
exec "> " & buildParallel
if sizeof(int) == 8: # 32-bit tests on 64-bit arch
for td in testDesc:
if td.path in useDebug:
test "-d:Constantine32 -d:debugConstantine -d:ConstantineASM=false", td.path, cmdFile
else:
test "-d:Constantine32 -d:ConstantineASM=false", td.path, cmdFile
# cmdFile.close()
# Execute everything in parallel with GNU parallel
clearParallelBuild()
runTests(requireGMP = true, dumpCmdFile = true, test32bit = true, testASM = false)
exec "parallel --keep-order --group < " & buildParallel
# Now run the benchmarks
@ -329,33 +321,17 @@ task test_parallel_no_assembler, "Run all tests (without macro assembler) in par
runBench("bench_pairing_bls12_381")
runBench("bench_pairing_bn254_nogami")
runBench("bench_pairing_bn254_snarks")
runBench("bench_sha256")
task test_parallel_no_gmp, "Run all tests in parallel (via GNU parallel)":
# -d:testingCurves is configured in a *.nim.cfg for convenience
let cmdFile = true # open(buildParallel, mode = fmWrite) # Nimscript doesn't support IO :/
exec "> " & buildParallel
for td in testDesc:
if not td.useGMP:
if td.path in useDebug:
test "-d:debugConstantine", td.path, cmdFile
else:
test "", td.path, cmdFile
# cmdFile.close()
# Execute everything in parallel with GNU parallel
clearParallelBuild()
runTests(requireGMP = false, dumpCmdFile = true)
exec "parallel --keep-order --group < " & buildParallel
exec "> " & buildParallel
if sizeof(int) == 8: # 32-bit tests on 64-bit arch
for td in testDesc:
if not td.useGMP:
if td.path in useDebug:
test "-d:Constantine32 -d:debugConstantine", td.path, cmdFile
else:
test "-d:Constantine32", td.path, cmdFile
# cmdFile.close()
# Execute everything in parallel with GNU parallel
clearParallelBuild()
runTests(requireGMP = false, dumpCmdFile = true, test32bit = true)
exec "parallel --keep-order --group < " & buildParallel
# Now run the benchmarks
@ -374,33 +350,18 @@ task test_parallel_no_gmp, "Run all tests in parallel (via GNU parallel)":
runBench("bench_pairing_bls12_381")
runBench("bench_pairing_bn254_nogami")
runBench("bench_pairing_bn254_snarks")
runBench("bench_sha256")
task test_parallel_no_gmp_no_assembler, "Run all tests in parallel (via GNU parallel)":
# -d:testingCurves is configured in a *.nim.cfg for convenience
let cmdFile = true # open(buildParallel, mode = fmWrite) # Nimscript doesn't support IO :/
exec "> " & buildParallel
for td in testDesc:
if not td.useGMP:
if td.path in useDebug:
test "-d:debugConstantine -d:ConstantineASM=false", td.path, cmdFile
else:
test "-d:ConstantineASM=false", td.path, cmdFile
# cmdFile.close()
# Execute everything in parallel with GNU parallel
clearParallelBuild()
runTests(requireGMP = false, dumpCmdFile = true, testASM = false)
exec "parallel --keep-order --group < " & buildParallel
exec "> " & buildParallel
if sizeof(int) == 8: # 32-bit tests on 64-bit arch
for td in testDesc:
if not td.useGMP:
if td.path in useDebug:
test "-d:Constantine32 -d:debugConstantine", td.path, cmdFile
else:
test "-d:Constantine32", td.path, cmdFile
# cmdFile.close()
# Execute everything in parallel with GNU parallel
clearParallelBuild()
runTests(requireGMP = false, dumpCmdFile = true, test32bit = true, testASM = false)
exec "parallel --keep-order --group < " & buildParallel
# Now run the benchmarks
@ -419,6 +380,7 @@ task test_parallel_no_gmp_no_assembler, "Run all tests in parallel (via GNU para
runBench("bench_pairing_bls12_381")
runBench("bench_pairing_bn254_nogami")
runBench("bench_pairing_bn254_snarks")
runBench("bench_sha256")
task bench_fp, "Run benchmark 𝔽p with your default compiler":
runBench("bench_fp")
@ -599,3 +561,6 @@ task bench_pairing_bn254_snarks_gcc_noasm, "Run pairings benchmarks for BN254-Sn
task bench_pairing_bn254_snarks_clang_noasm, "Run pairings benchmarks for BN254-Snarks - Clang no Assembly":
runBench("bench_pairing_bn254_snarks", "clang", useAsm = false)
task bench_sha256, "Run SHA256 benchmarks":
runBench("bench_sha256")

View File

@ -0,0 +1,348 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
../config/common,
../io/endians
# SHA256, a hash function from the SHA2 family
# --------------------------------------------------------------------------------
#
# References:
# - NIST: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
# - IETF: US Secure Hash Algorithms (SHA and HMAC-SHA) https://tools.ietf.org/html/rfc4634
# - Intel optimization https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/sha-256-implementations-paper.pdf
# - Parallelizing message schedules
# to accelerate the computations of hash functions
# Shay Gueron, Vlad Krasnov, 2012
# https://eprint.iacr.org/2012/067.pdf
#
# Vectors:
# - https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/SHA256.pdf
# Types and constants
# ----------------------------------------------------------------
const
DigestSize = 32
BlockSize = 64
HashSize = DigestSize div sizeof(uint32) # 8
type
Sha256Context* = object
## Align to 64 for cache line and SIMD friendliness
H{.align: 64}: array[HashSize, uint32]
buf{.align: 64}: array[BlockSize, byte]
msgLen: uint64
bufIdx: uint8
sha256* = Sha256Context
# Internal
# ----------------------------------------------------------------
# TODO: vectorized implementations
# No exceptions allowed in core cryptographic operations
{.push raises: [].}
{.push checks: off.}
template rotr(x, n: uint32): uint32 =
## Rotate right the bits
# We always use it with constants in 0 ..< 32
# so undefined behaviour.
(x shr n) or (x shl (32 - n))
template ch(x, y, z: uint32): uint32 =
## "Choose" function of SHA256
## Choose bit i from yi or zi depending on xi
when false: # Spec FIPS 180-4
(x and y) xor (not(x) and z)
else: # RFC4634
((x and (y xor z)) xor z)
template maj(x, y, z: uint32): uint32 =
## "Majority" function of SHA256
when false: # Spec FIPS 180-4
(x and y) xor (x and z) xor (y and z)
else: # RFC4634
(x and (y or z)) or (y and z)
template S0(x: uint32): uint32 =
# Σ₀
rotr(x, 2) xor rotr(x, 13) xor rotr(x, 22)
template S1(x: uint32): uint32 =
# Σ₁
rotr(x, 6) xor rotr(x, 11) xor rotr(x, 25)
template s0(x: uint32): uint32 =
# σ₀
rotr(x, 7) xor rotr(x, 18) xor (x shr 3)
template s1(x: uint32): uint32 =
# σ₁
rotr(x, 17) xor rotr(x, 19) xor (x shr 10)
func setZero[N](a: var array[N, SomeNumber]){.inline.} =
for i in 0 ..< a.len:
a[i] = 0
func hashMessageBlocks[T: byte|char](
H: var array[HashSize, uint32],
message: openarray[T]): uint =
## Hash a message block by block
## Sha256 block size is 64 bytes hence
## a message will be process 64 by 64 bytes.
## FIPS.180-4 6.2.2. SHA-256 Hash Computation
result = 0
let numBlocks = message.len.uint div BlockSize
if numBlocks == 0:
return 0
const K256 = [
0x428a2f98'u32, 0x71374491'u32, 0xb5c0fbcf'u32, 0xe9b5dba5'u32, 0x3956c25b'u32, 0x59f111f1'u32, 0x923f82a4'u32, 0xab1c5ed5'u32,
0xd807aa98'u32, 0x12835b01'u32, 0x243185be'u32, 0x550c7dc3'u32, 0x72be5d74'u32, 0x80deb1fe'u32, 0x9bdc06a7'u32, 0xc19bf174'u32,
0xe49b69c1'u32, 0xefbe4786'u32, 0x0fc19dc6'u32, 0x240ca1cc'u32, 0x2de92c6f'u32, 0x4a7484aa'u32, 0x5cb0a9dc'u32, 0x76f988da'u32,
0x983e5152'u32, 0xa831c66d'u32, 0xb00327c8'u32, 0xbf597fc7'u32, 0xc6e00bf3'u32, 0xd5a79147'u32, 0x06ca6351'u32, 0x14292967'u32,
0x27b70a85'u32, 0x2e1b2138'u32, 0x4d2c6dfc'u32, 0x53380d13'u32, 0x650a7354'u32, 0x766a0abb'u32, 0x81c2c92e'u32, 0x92722c85'u32,
0xa2bfe8a1'u32, 0xa81a664b'u32, 0xc24b8b70'u32, 0xc76c51a3'u32, 0xd192e819'u32, 0xd6990624'u32, 0xf40e3585'u32, 0x106aa070'u32,
0x19a4c116'u32, 0x1e376c08'u32, 0x2748774c'u32, 0x34b0bcb5'u32, 0x391c0cb3'u32, 0x4ed8aa4a'u32, 0x5b9cca4f'u32, 0x682e6ff3'u32,
0x748f82ee'u32, 0x78a5636f'u32, 0x84c87814'u32, 0x8cc70208'u32, 0x90befffa'u32, 0xa4506ceb'u32, 0xbef9a3f7'u32, 0xc67178f2'u32
]
var
a = H[0]
b = H[1]
c = H[2]
d = H[3]
e = H[4]
f = H[5]
g = H[6]
h = H[7]
for _ in 0 ..< numBlocks:
# The first 16 bytes have different handling
# from bytes 16..<64.
# Using an array[64, uint32] will span it
# across 8 cache lines impacting performance
# Workspace with message schedule Wₜ
var W{.noInit.}: array[16, uint32]
var t = 0'u32
while t < 16: # Wₜ = Mⁱₜ
W[t].parseFromBlob(message, result, bigEndian)
let T1 = h + S1(e) + ch(e, f, g) + K256[t] + W[t]
let T2 = S0(a) + maj(a, b, c)
h = g
g = f
f = e
e = d + T1
d = c
c = b
b = a
a = T1+T2
t += 1
while t < 64:
W[t mod 16] += s1(W[(t-2) mod 16]) +
W[(t-7) mod 16] +
s0(W[(t-15) mod 16])
let T1 = h + S1(e) + ch(e, f, g) + K256[t] + W[t mod 16]
let T2 = S0(a) + maj(a, b, c)
h = g
g = f
f = e
e = d + T1
d = c
c = b
b = a
a = T1+T2
t += 1
a += H[0]; H[0] = a
b += H[1]; H[1] = b
c += H[2]; H[2] = c
d += H[3]; H[3] = d
e += H[4]; H[4] = e
f += H[5]; H[5] = f
g += H[6]; H[6] = g
h += H[7]; H[7] = h
func dumpHash(
digest: var array[DigestSize, byte],
H: array[HashSize, uint32]) =
## Convert the internal hash into a message digest
var dstIdx = 0'u
for i in 0 ..< H.len:
digest.dumpRawInt(H[i], dstIdx, bigEndian)
dstIdx += uint sizeof(uint32)
func copy[N: static int, T: byte|char](
dst: var array[N, byte],
dStart: SomeInteger,
src: openArray[T],
sStart: SomeInteger,
len: SomeInteger
) =
## Copy dst[dStart ..< dStart+len] = src[sStart ..< sStart+len]
## Unlike the standard library, this cannot throw
## even a defect.
## It also handles copy of char into byte arrays
debug:
doAssert 0 <= dStart and dStart+len <= dst.len.uint
doAssert 0 <= sStart and sStart+len <= src.len.uint
for i in 0 ..< len:
dst[dStart + i] = byte src[sStart + i]
func hashBuffer(ctx: var Sha256Context) =
discard ctx.H.hashMessageBlocks(ctx.buf)
ctx.buf.setZero()
ctx.bufIdx = 0
# Public API
# ----------------------------------------------------------------
func init*(ctx: var Sha256Context) =
## Initialize or reinitialize a Sha256 context
ctx.msgLen = 0
ctx.buf.setZero()
ctx.bufIdx = 0
ctx.H[0] = 0x6a09e667'u32;
ctx.H[1] = 0xbb67ae85'u32;
ctx.H[2] = 0x3c6ef372'u32;
ctx.H[3] = 0xa54ff53a'u32;
ctx.H[4] = 0x510e527f'u32;
ctx.H[5] = 0x9b05688c'u32;
ctx.H[6] = 0x1f83d9ab'u32;
ctx.H[7] = 0x5be0cd19'u32;
func update*[T: char|byte](ctx: var Sha256Context, message: openarray[T]) =
## Append a message to a SHA256 context
## for incremental SHA256 computation
##
## Security note: the tail of your message might be stored
## in an internal buffer.
## if sensitive content is used, ensure that
## `ctx.finish(...)` and `ctx.clear()` are called as soon as possible.
## Additionally ensure that the message(s) passed were stored
## in memory considered secure for your threat model.
##
## For passwords and secret keys, you MUST NOT use raw SHA-256
## use a Key Derivation Function instead (KDF)
debug:
doAssert: 0 <= ctx.bufIdx and ctx.bufIdx.int < ctx.buf.len
for i in ctx.bufIdx ..< ctx.buf.len:
doAssert ctx.buf[i] == 0
var # Message processing state machine
cur = 0'u
bytesLeft = message.len.uint
ctx.msgLen += bytesLeft
if ctx.bufIdx != 0: # Previous partial update
let bufIdx = ctx.bufIdx.uint
let free = ctx.buf.sizeof().uint - bufIdx
if free > bytesLeft:
# Enough free space, store in buffer
ctx.buf.copy(dStart = bufIdx, message, sStart = 0, len = bytesLeft)
ctx.bufIdx += bytesLeft.uint8
return
else:
# Fill the buffer and do one sha256 hash
ctx.buf.copy(dStart = bufIdx, message, sStart = 0, len = free)
ctx.hashBuffer()
# Update message state for further processing
cur = free
bytesLeft -= free
# Process n blocks (64 byte each)
let consumed = ctx.H.hashMessageBlocks(
message.toOpenArray(int cur, message.len-1))
cur += consumed
bytesLeft -= consumed
if bytesLeft != 0:
# Store the tail in buffer
debug: # TODO: state machine formal verification - https://nim-lang.org/docs/drnim.html
doAssert ctx.bufIdx == 0
doAssert cur + bytesLeft == message.len.uint
ctx.buf.copy(dStart = 0'u, message, sStart = cur, len = bytesLeft)
ctx.bufIdx = uint8 bytesLeft
func finish*(ctx: var Sha256Context, digest: var array[32, byte]) =
## Finalize a SHA256 computation and output the
## message digest to the `digest` buffer.
##
## Security note: this does not clear the internal buffer.
## if sensitive content is used, use "ctx.clear()"
## and also make sure that the message(s) passed were stored
## in memory considered secure for your threat model.
##
## For passwords and secret keys, you MUST NOT use raw SHA-256
## use a Key Derivation Function instead (KDF)
debug:
doAssert: 0 <= ctx.bufIdx and ctx.bufIdx.int < ctx.buf.len
for i in ctx.bufIdx ..< ctx.buf.len:
doAssert ctx.buf[i] == 0
# Add '1' bit at the end of the message (+7 zero bits)
ctx.buf[ctx.bufIdx] = 0b1000_0000
# Add k bits so that msgLenBits + 1 + k ≡ 448 mod 512
# Hence in bytes msgLen + 1 + K ≡ 56 mod 64
const padZone = 56
if ctx.bufIdx >= padZone:
# We are in the 56..<64 mod 64 byte count
# and need to rollover to 0
ctx.hashBuffer()
let lenInBits = ctx.msgLen.uint64 * 8
ctx.buf.dumpRawInt(lenInBits, padZone, bigEndian)
discard ctx.H.hashMessageBlocks(ctx.buf)
digest.dumpHash(ctx.H)
func clear*(ctx: var Sha256Context) =
## Clear the context internal buffers
## Security note:
## For passwords and secret keys, you MUST NOT use raw SHA-256
## use a Key Derivation Function instead (KDF)
# TODO: ensure compiler cannot optimize the code away
ctx.buf.setZero()
func hash*[T: char|byte](
HashKind: type sha256,
digest: var array[32, byte],
message: openarray[T],
clearMem = false) =
## Produce a SHA256 digest from a message
var ctx {.noInit.}: HashKind
ctx.init()
ctx.update(message)
ctx.finish(digest)
if clearMem:
ctx.clear()
func hash*[T: char|byte](
HashKind: type sha256,
message: openarray[T],
clearmem = false): array[32, byte] =
## Produce a SHA256 digest from a message
HashKind.hash(result, message, clearMem)

View File

@ -0,0 +1,78 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import ../config/common
# perf critical we don't want bound checks here
# So no checks and we avoid signed int to ensur eno exceptions.
# TODO: Nim formal verification: https://nim-lang.org/docs/drnim.html
{.push checks:off, raises: [].}
template toByte*(x: SomeUnsignedInt): byte =
## At compile-time, conversion to bytes checks the range
## we want to ensure this is done at the register level
## at runtime in a single "mov byte" instruction
when nimvm:
byte(x and 0xFF)
else:
byte(x)
func parseFromBlob*[T: byte|char](
dst: var SomeUnsignedInt,
src: openArray[T],
cursor: var uint, endian: static Endianness) {.inline.} =
## Read an unsigned integer from a raw binary blob.
## The `cursor` represents the current index in the array and is updated
## by N bytes where N is the size of `dst` type in bytes.
## The binary blob is interpreted as:
## - an array of words traversed from 0 ..< len (little-endian), via an incremented `cursor`
## - with each word being of `endian` ordering for deserialization purpose.
debug:
doAssert 0 <= cursor and cursor < src.len.uint
doAssert cursor + sizeof(dst).uint <= src.len.uint,
"cursor (" & $cursor & ") + sizeof(dst) (" & $sizeof(dst) &
") <= src.len (" & $src.len & ")"
type U = typeof(dst)
const L = sizeof(dst)
var accum: U = 0
when endian == littleEndian:
for i in 0'u ..< L:
accum = accum or (U(src[cursor+i]) shl (i * 8))
else:
for i in 0'u ..< L:
accum = accum or (U(src[cursor+i]) shl ((L - 1 - i) * 8))
dst = accum
cursor.inc(L)
func dumpRawInt*[T: byte|char](
dst: var openArray[T],
src: SomeUnsignedInt,
cursor: uint, endian: static Endianness) {.inline.} =
## Dump an integer into raw binary form
## The `cursor` represents the current index in the array and is updated
## by N bytes where N is the size of `src` type in bytes.
## The binary blob is interpreted as:
## - an array of words traversed from 0 ..< len (little-endian), via an incremented `cursor`
## - with each word being of `endian` ordering for deserialization purpose.
debug:
doAssert 0 <= cursor and cursor < dst.len.uint
doAssert cursor + sizeof(src).uint <= dst.len.uint,
"cursor (" & $cursor & ") + sizeof(src) (" & $sizeof(src) &
") <= dst.len (" & $dst.len & ")"
type U = typeof(src)
const L = uint sizeof(src)
when endian == littleEndian:
for i in 0'u ..< L:
dst[cursor+i] = toByte(src shr (i * 8))
else:
for i in 0'u ..< L:
dst[cursor+i] = toByte(src shr ((L-i-1) * 8))

View File

@ -12,7 +12,8 @@
import
../primitives/constant_time,
../config/[common, type_bigint]
../config/[common, type_bigint],
./endians
# ############################################################
#
@ -152,24 +153,17 @@ func fromUint*(
#
# ############################################################
template toByte(x: SomeUnsignedInt): byte =
## At compile-time, conversion to bytes checks the range
## we want to ensure this is done at the register level
## at runtime in a single "mov byte" instruction
when nimvm:
byte(x and 0xFF)
else:
byte(x)
template blobFrom(dst: var openArray[byte], src: SomeUnsignedInt, startIdx: int, endian: static Endianness) =
## Write an integer into a raw binary blob
## Swapping endianness if needed
## startidx is the first written array item if littleEndian is requested
## or the last if bigEndian is requested
when endian == cpuEndian:
for i in 0 ..< sizeof(src):
dst[startIdx+i] = toByte((src shr (i * 8)))
dst[startIdx+i] = toByte(src shr (i * 8))
else:
for i in 0 ..< sizeof(src):
dst[startIdx+sizeof(src)-1-i] = toByte((src shr (i * 8)))
dst[startIdx+sizeof(src)-1-i] = toByte(src shr (i * 8))
func exportRawUintLE(
dst: var openarray[byte],

View File

@ -364,6 +364,14 @@ func random_long01Seq_with_randZ*(rng: var RngState, T: typedesc[ECP_ShortW_Proj
## Skewed towards long bitstrings of 0 or 1
rng.random_long01Seq_with_randZ(result)
# Byte sequences
# ------------------------------------------------------------
func random_byte_seq*(rng: var RngState, length: int): seq[byte] =
result.newSeq(length)
for b in result.mitems:
b = byte rng.next()
# Sanity checks
# ------------------------------------------------------------

View File

@ -0,0 +1,115 @@
import
# Internals
../constantine/hashes/h_sha256,
# Helpers
../helpers/prng_unsafe,
# Third-party
stew/byteutils
proc SHA256[T: byte|char](
msg: openarray[T],
digest: ptr array[32, byte] = nil
): ptr array[32, byte] {.cdecl, dynlib: "libssl.so", importc.}
proc SHA256_OpenSSL[T: byte|char](
digest: var array[32, byte],
s: openarray[T]) =
discard SHA256(s, digest.addr)
echo "\n------------------------------------------------------\n"
const SmallSizeIters = 128
const LargeSizeIters = 10
proc sanityABC =
var bufCt: array[32, byte]
let msg = "abc"
let hashed = hexToByteArray[32](
"BA7816BF8F01CFEA414140DE5DAE2223" &
"B00361A396177A9CB410FF61F20015AD")
sha256.hash(bufCt, msg)
doAssert bufCt == hashed
proc sanityABC2 =
var bufCt: array[32, byte]
let msg = "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
let hashed = hexToByteArray[32](
"248D6A61D20638B8E5C026930C3E6039" &
"A33CE45964FF2167F6ECEDD419DB06C1")
sha256.hash(bufCt, msg)
doAssert bufCt == hashed
proc innerTest(rng: var RngState, sizeRange: Slice[int]) =
let size = rng.random_unsafe(sizeRange)
let msg = rng.random_byte_seq(size)
var bufCt, bufOssl: array[32, byte]
sha256.hash(bufCt, msg)
SHA256_OpenSSL(bufOssl, msg)
doAssert bufCt == bufOssl
proc chunkTest(rng: var RngState, sizeRange: Slice[int]) =
let size = rng.random_unsafe(sizeRange)
let msg = rng.random_byte_seq(size)
let chunkSize = rng.random_unsafe(2 ..< 20)
var bufOnePass: array[32, byte]
sha256.hash(bufOnePass, msg)
var bufChunked: array[32, byte]
let maxChunk = max(2, sizeRange.b div 10) # Consume up to 10% at once
var ctx: Sha256Context
ctx.init()
var cur = 0
while size - cur > 0:
let chunkSize = rng.random_unsafe(0 ..< maxChunk)
let stop = min(cur+chunkSize-1, size-1)
let consumed = stop-cur+1
ctx.update(msg.toOpenArray(cur, stop))
cur += consumed
ctx.finish(bufChunked)
doAssert bufOnePass == bufChunked
proc main() =
echo "SHA256 - sanity checks"
sanityABC()
sanityABC2()
echo "SHA256 - Starting differential testing vs OpenSSL"
var rng: RngState
rng.seed(0xFACADE)
echo "SHA256 - 0 <= size < 64 - exhaustive"
for i in 0 ..< 64:
rng.innerTest(i .. i)
echo "SHA256 - 0 <= size < 64 - exhaustive chunked"
for i in 0 ..< 64:
rng.chunkTest(i .. i)
echo "SHA256 - 64 <= size < 1024B"
for _ in 0 ..< SmallSizeIters:
rng.innerTest(0 ..< 1024)
echo "SHA256 - 64 <= size < 1024B - chunked"
for _ in 0 ..< SmallSizeIters:
rng.chunkTest(0 ..< 1024)
echo "SHA256 - 1MB <= size < 50MB"
for _ in 0 ..< LargeSizeIters:
rng.innerTest(1_000_000 ..< 50_000_000)
echo "SHA256 - Differential testing vs OpenSSL - SUCCESS"
main()