Somewhat working (?) sage script for quadratic/cubic non-residues

This commit is contained in:
Mamy André-Ratsimbazafy 2020-03-22 21:57:15 +01:00
parent 8b7374f405
commit e47159e40d
No known key found for this signature in database
GPG Key ID: 7B88AD1FE79492E1

View File

@ -12,22 +12,104 @@
# Naomi Benger and Michael Scott, 2009
# https://eprint.iacr.org/2009/556
# Note: Some of the curves here are not pairing friendly and never used in an extension field.
# We still check them to potentially add them as additional test vectors in
# 𝔽p2, 𝔽p6, 𝔽p12, ... since as they are most 0xFF bytes they
# trigger "carry" code-paths that are not triggered by pairing-friendly moduli.
Curves = {
'P224': Integer('0xffffffffffffffffffffffffffffffff000000000000000000000001'),
'BN254': Integer('0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47'),
'Curve25519': Integer('0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed'),
'P256': Integer('0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff'),
'Secp256k1': Integer('0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F'),
'BLS12_377': Integer('0x01ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508c00000000001'),
'BLS12_381': Integer('0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab'),
'BN446': Integer('0x2400000000000000002400000002d00000000d800000021c0000001800000000870000000b0400000057c00000015c000000132000000067'),
'FKM12_447': Integer('0x4ce300001338c00001c08180000f20cfffffe5a8bffffd08a000000f228000007e8ffffffaddfffffffdc00000009efffffffca000000007'),
'BLS12_461': Integer('0x15555545554d5a555a55d69414935fbd6f1e32d8bacca47b14848b42a8dffa5c1cc00f26aa91557f00400020000555554aaaaaac0000aaaaaaab'),
'BN462': Integer('0x240480360120023ffffffffff6ff0cf6b7d9bfca0000000000d812908f41c8020ffffffffff6ff66fc6ff687f640000000002401b00840138013')
}
def find_quadratic_non_residues(A, B, Field, modulus):
result = false
for a in A:
for b in B:
residue = Fp(a^2 + b^2).residue_symbol(Fp.ideal(modulus),2)
if residue < 0:
print(f' 𝔽p4 = 𝔽p2[v] / v² - ({a} ± {b}𝑖) is an irreducible polynomial')
result = true
return result
def find_cubic_non_residues_pmod3eq1(A, B, modulus):
assert modulus % 3 == 1
result = false
for a in A:
for b in B:
# The following `residue_symbol` is not satisfactory for cubic root
# It just returns exceptions for all values
#
#
# residue = Fp(a^2 + b^2).residue_symbol(Fp.ideal(modulus),3)
# if residue < 0:
# print(f' 𝔽p2[v] / v³ - ({a} ± {b}𝑖) is an irreducible polynomial')
# for p ≡ 1 (mod 3)
# we have ``a`` a cubic residue iff a^((p-1)/3) ≡ 1 (mod p)
residue = pow(a^2 + b^2, (modulus-1)//3, modulus)
if residue != 1:
print(f' 𝔽p6 = 𝔽p2[v] / v³ - ({a} ± {b}𝑖) is a possible extension')
result = true
return result
for curve, modulus in Curves.items():
print(f'Curve {curve}:')
print(f' Modulus 0x{modulus.hex()}:')
pMod4 = modulus % 4
print(f' p mod 4: {pMod4}')
if pMod4 == 3:
# This is actually the hard case, but given that most pairing friendly curves somehow end up in that case
# this is the one we will focus on.
print(f' ^ suggested irreducible polynomial for 𝔽p2: u² + 1 (𝔽p2 complex)')
else:
print(f' ⚠️ p mod 4 != 3: to be reviewed manually. See Theorem 1 of Scott 2009 Constructing Tower Extensions for the implementation of Pairing-Based Cryptography')
print(f' p mod 8: {modulus % 8}')
print(f' p mod 12: {modulus % 12}')
if pMod4 != 3:
print(f' p mod 4 != 3 => find a square/cubic root and then successively adjoin roots of the roots to build the tower.')
print(f' Skipping to next curve.')
continue
Fp.<p> = NumberField(x - 1)
print('')
print(' Searching for valid irreducible polynomials ...')
# Constructing 𝔽p4
print(' 𝔽p4 = 𝔽p2[v] / v² - (a ± 𝑖 b))')
found = find_quadratic_non_residues([0, 1, 2], [1, 2], Fp, modulus)
if not found:
found = find_quadratic_non_residues(range(5), range(1, 5), Fp, modulus)
assert found
found = false
# Constructing 𝔽p6
print(' 𝔽p6 = 𝔽p2[v] / v³ - (a ± 𝑖 b))')
pMod3 = modulus % 3
print(f' p mod 3: {pMod3}')
if pMod3 != 1:
# A remark on the computation of cube roots in finite fields
# https://eprint.iacr.org/2009/457.pdf
print(f' p mod 3 != 1 => to be reviewed manually')
print(f' Skipping to next curve.')
continue
if not found:
found = find_cubic_non_residues_pmod3eq1([0, 1, 2], [1, 2], modulus)
if not found:
found = find_cubic_non_residues_pmod3eq1(range(5), range(1, 5), modulus)
if not found:
found = find_cubic_non_residues_pmod3eq1(range(17), range(1, 17), modulus)
assert found
# ############################################################
#