Square ADX (#160)
* Add MULX/ADOX/ADCX assembly for squaring 4 limbs * Add squarings for 6 limbs * Use the new square assembly where relevant * Fix 32-bit register name and calling convention * typo * Disable MontRed ASM for 2 limbs or less
This commit is contained in:
parent
8a7c35af59
commit
aefd40f455
|
@ -12,7 +12,8 @@ import
|
|||
# Internal
|
||||
../../config/common,
|
||||
../../primitives,
|
||||
./limbs_asm_montred_x86
|
||||
./limbs_asm_montred_x86,
|
||||
./limbs_asm_mul_x86
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
|
@ -176,3 +177,37 @@ macro montMul_CIOS_nocarry_gen[N: static int](r_MM: var Limbs[N], a_MM, b_MM, M_
|
|||
func montMul_CIOS_nocarry_asm*(r: var Limbs, a, b, M: Limbs, m0ninv: BaseType) =
|
||||
## Constant-time modular multiplication
|
||||
montMul_CIOS_nocarry_gen(r, a, b, M, m0ninv)
|
||||
|
||||
# Montgomery Squaring
|
||||
# ------------------------------------------------------------
|
||||
|
||||
func square_asm_inline[rLen, aLen: static int](r: var Limbs[rLen], a: Limbs[aLen]) {.inline.} =
|
||||
## Multi-precision Squaring
|
||||
## Assumes r doesn't alias a
|
||||
## Extra indirection as the generator assumes that
|
||||
## arrays are pointers, which is true for parameters
|
||||
## but not for stack variables
|
||||
sqr_gen(r, a)
|
||||
|
||||
func montRed_asm_inline[N: static int](
|
||||
r: var array[N, SecretWord],
|
||||
a: array[N*2, SecretWord],
|
||||
M: array[N, SecretWord],
|
||||
m0ninv: BaseType,
|
||||
hasSpareBit: static bool
|
||||
) {.inline.} =
|
||||
## Constant-time Montgomery reduction
|
||||
## Extra indirection as the generator assumes that
|
||||
## arrays are pointers, which is true for parameters
|
||||
## but not for stack variables
|
||||
montyRedc2x_gen(r, a, M, m0ninv, hasSpareBit)
|
||||
|
||||
func montSquare_CIOS_asm*[N](
|
||||
r: var Limbs[N],
|
||||
a, M: Limbs[N],
|
||||
m0ninv: BaseType,
|
||||
hasSpareBit: static bool) =
|
||||
## Constant-time modular squaring
|
||||
var r2x {.noInit.}: Limbs[2*N]
|
||||
r2x.square_asm_inline(a)
|
||||
r.montRed_asm_inline(r2x, M, m0ninv, hasSpareBit)
|
||||
|
|
|
@ -12,7 +12,9 @@ import
|
|||
# Internal
|
||||
../../config/common,
|
||||
../../primitives,
|
||||
./limbs_asm_montred_x86
|
||||
./limbs_asm_montred_x86,
|
||||
./limbs_asm_montred_x86_adx_bmi2,
|
||||
./limbs_asm_mul_x86_adx_bmi2
|
||||
|
||||
# ############################################################
|
||||
#
|
||||
|
@ -271,3 +273,36 @@ macro montMul_CIOS_nocarry_adx_bmi2_gen[N: static int](r_MM: var Limbs[N], a_MM,
|
|||
func montMul_CIOS_nocarry_asm_adx_bmi2*(r: var Limbs, a, b, M: Limbs, m0ninv: BaseType) =
|
||||
## Constant-time modular multiplication
|
||||
montMul_CIOS_nocarry_adx_bmi2_gen(r, a, b, M, m0ninv)
|
||||
|
||||
# Montgomery Squaring
|
||||
# ------------------------------------------------------------
|
||||
|
||||
func square_asm_adx_bmi2_inline[rLen, aLen: static int](r: var Limbs[rLen], a: Limbs[aLen]) {.inline.} =
|
||||
## Multi-precision Squaring
|
||||
## Extra indirection as the generator assumes that
|
||||
## arrays are pointers, which is true for parameters
|
||||
## but not for stack variables.
|
||||
sqrx_gen(r, a)
|
||||
|
||||
func montRed_asm_adx_bmi2_inline[N: static int](
|
||||
r: var array[N, SecretWord],
|
||||
a: array[N*2, SecretWord],
|
||||
M: array[N, SecretWord],
|
||||
m0ninv: BaseType,
|
||||
hasSpareBit: static bool
|
||||
) {.inline.} =
|
||||
## Constant-time Montgomery reduction
|
||||
## Extra indirection as the generator assumes that
|
||||
## arrays are pointers, which is true for parameters
|
||||
## but not for stack variables.
|
||||
montyRedc2x_adx_gen(r, a, M, m0ninv, hasSpareBit)
|
||||
|
||||
func montSquare_CIOS_asm_adx_bmi2*[N](
|
||||
r: var Limbs[N],
|
||||
a, M: Limbs[N],
|
||||
m0ninv: BaseType,
|
||||
hasSpareBit: static bool) =
|
||||
## Constant-time modular squaring
|
||||
var r2x {.noInit.}: Limbs[2*N]
|
||||
r2x.square_asm_adx_bmi2_inline(a)
|
||||
r.montRed_asm_adx_bmi2_inline(r2x, M, m0ninv, hasSpareBit)
|
||||
|
|
|
@ -60,10 +60,13 @@ proc finalSubCanOverflow*(
|
|||
## `overflowReg` should be a register that will be used
|
||||
## to store the carry flag
|
||||
|
||||
ctx.comment "Final substraction (may carry)"
|
||||
|
||||
# Mask: overflowed contains 0xFFFF or 0x0000
|
||||
ctx.sbb overflowReg, overflowReg
|
||||
|
||||
# Now substract the modulus to test a < p
|
||||
let N = M.len
|
||||
ctx.comment "Final substraction (may carry)"
|
||||
for i in 0 ..< N:
|
||||
ctx.mov scratch[i], a[i]
|
||||
if i == 0:
|
||||
|
@ -71,6 +74,8 @@ proc finalSubCanOverflow*(
|
|||
else:
|
||||
ctx.sbb scratch[i], M[i]
|
||||
|
||||
# If it overflows here, it means that it was
|
||||
# smaller than the modulus and we don't need `scratch`
|
||||
ctx.sbb overflowReg, 0
|
||||
|
||||
# If we borrowed it means that we were smaller than
|
||||
|
@ -83,12 +88,12 @@ proc finalSubCanOverflow*(
|
|||
# Montgomery reduction
|
||||
# ------------------------------------------------------------
|
||||
|
||||
macro montyRedc2x_gen[N: static int](
|
||||
macro montyRedc2x_gen*[N: static int](
|
||||
r_MR: var array[N, SecretWord],
|
||||
a_MR: array[N*2, SecretWord],
|
||||
M_MR: array[N, SecretWord],
|
||||
m0ninv_MR: BaseType,
|
||||
spareBits: static int
|
||||
hasSpareBit: static bool
|
||||
) =
|
||||
result = newStmtList()
|
||||
|
||||
|
@ -137,7 +142,8 @@ macro montyRedc2x_gen[N: static int](
|
|||
# r -= M
|
||||
|
||||
# No register spilling handling
|
||||
doAssert N <= 6, "The Assembly-optimized montgomery multiplication requires at most 6 limbs."
|
||||
doAssert N > 2, "The Assembly-optimized montgomery reduction requires a minimum of 2 limbs."
|
||||
doAssert N <= 6, "The Assembly-optimized montgomery reduction requires at most 6 limbs."
|
||||
|
||||
for i in 0 ..< N:
|
||||
ctx.mov u[i], a[i]
|
||||
|
@ -205,7 +211,7 @@ macro montyRedc2x_gen[N: static int](
|
|||
let t = repackRegisters(v, u[N], u[N+1])
|
||||
|
||||
# v is invalidated
|
||||
if spareBits >= 1:
|
||||
if hasSpareBit:
|
||||
ctx.finalSubNoCarry(r, u, M, t)
|
||||
else:
|
||||
ctx.finalSubCanOverflow(r, u, M, t, rax)
|
||||
|
@ -218,7 +224,93 @@ func montRed_asm*[N: static int](
|
|||
a: array[N*2, SecretWord],
|
||||
M: array[N, SecretWord],
|
||||
m0ninv: BaseType,
|
||||
spareBits: static int
|
||||
hasSpareBit: static bool
|
||||
) =
|
||||
## Constant-time Montgomery reduction
|
||||
montyRedc2x_gen(r, a, M, m0ninv, spareBits)
|
||||
static: doAssert UseASM_X86_64, "This requires x86-64."
|
||||
montyRedc2x_gen(r, a, M, m0ninv, hasSpareBit)
|
||||
|
||||
# Sanity checks
|
||||
# ----------------------------------------------------------
|
||||
|
||||
when isMainModule:
|
||||
import
|
||||
../../config/[type_bigint, common],
|
||||
../../arithmetic/limbs
|
||||
|
||||
type SW = SecretWord
|
||||
|
||||
# TODO: Properly handle low number of limbs
|
||||
|
||||
func montyRedc2x_Comba[N: static int](
|
||||
r: var array[N, SecretWord],
|
||||
a: array[N*2, SecretWord],
|
||||
M: array[N, SecretWord],
|
||||
m0ninv: BaseType) =
|
||||
## Montgomery reduce a double-precision bigint modulo M
|
||||
# We use Product Scanning / Comba multiplication
|
||||
var t, u, v = Zero
|
||||
var carry: Carry
|
||||
var z: typeof(r) # zero-init, ensure on stack and removes in-place problems in tower fields
|
||||
staticFor i, 0, N:
|
||||
staticFor j, 0, i:
|
||||
mulAcc(t, u, v, z[j], M[i-j])
|
||||
|
||||
addC(carry, v, v, a[i], Carry(0))
|
||||
addC(carry, u, u, Zero, carry)
|
||||
addC(carry, t, t, Zero, carry)
|
||||
|
||||
z[i] = v * SecretWord(m0ninv)
|
||||
mulAcc(t, u, v, z[i], M[0])
|
||||
v = u
|
||||
u = t
|
||||
t = Zero
|
||||
|
||||
staticFor i, N, 2*N-1:
|
||||
staticFor j, i-N+1, N:
|
||||
mulAcc(t, u, v, z[j], M[i-j])
|
||||
|
||||
addC(carry, v, v, a[i], Carry(0))
|
||||
addC(carry, u, u, Zero, carry)
|
||||
addC(carry, t, t, Zero, carry)
|
||||
|
||||
z[i-N] = v
|
||||
|
||||
v = u
|
||||
u = t
|
||||
t = Zero
|
||||
|
||||
addC(carry, z[N-1], v, a[2*N-1], Carry(0))
|
||||
|
||||
# Final substraction
|
||||
discard z.csub(M, SecretBool(carry) or not(z < M))
|
||||
r = z
|
||||
|
||||
|
||||
proc main2L() =
|
||||
let M = [SW 0xFFFFFFFF_FFFFFFFF'u64, SW 0x7FFFFFFF_FFFFFFFF'u64]
|
||||
|
||||
# a²
|
||||
let adbl_sqr = [SW 0xFF677F6000000001'u64, SW 0xD79897153FA818FD'u64, SW 0x68BFF63DE35C5451'u64, SW 0x2D243FE4B480041F'u64]
|
||||
# (-a)²
|
||||
let nadbl_sqr = [SW 0xFECEFEC000000004'u64, SW 0xAE9896D43FA818FB'u64, SW 0x690C368DE35C5450'u64, SW 0x01A4400534800420'u64]
|
||||
|
||||
var a_sqr{.noInit.}, na_sqr{.noInit.}: Limbs[2]
|
||||
var a_sqr_comba{.noInit.}, na_sqr_comba{.noInit.}: Limbs[2]
|
||||
|
||||
a_sqr.montRed_asm(adbl_sqr, M, 1, hasSpareBit = false)
|
||||
na_sqr.montRed_asm(nadbl_sqr, M, 1, hasSpareBit = false)
|
||||
a_sqr_comba.montyRedc2x_Comba(adbl_sqr, M, 1)
|
||||
na_sqr_comba.montyRedc2x_Comba(nadbl_sqr, M, 1)
|
||||
|
||||
debugecho "--------------------------------"
|
||||
debugecho "after:"
|
||||
debugecho " a_sqr: ", a_sqr.toString()
|
||||
debugecho " na_sqr: ", na_sqr.toString()
|
||||
debugecho " a_sqr_comba: ", a_sqr_comba.toString()
|
||||
debugecho " na_sqr_comba: ", na_sqr_comba.toString()
|
||||
|
||||
doAssert bool(a_sqr == na_sqr)
|
||||
doAssert bool(a_sqr == a_sqr_comba)
|
||||
|
||||
main2L()
|
||||
|
|
|
@ -35,12 +35,12 @@ static: doAssert UseASM_X86_64
|
|||
# Montgomery reduction
|
||||
# ------------------------------------------------------------
|
||||
|
||||
macro montyRedc2x_gen[N: static int](
|
||||
macro montyRedc2x_adx_gen*[N: static int](
|
||||
r_MR: var array[N, SecretWord],
|
||||
a_MR: array[N*2, SecretWord],
|
||||
M_MR: array[N, SecretWord],
|
||||
m0ninv_MR: BaseType,
|
||||
spareBits: static int
|
||||
hasSpareBit: static bool
|
||||
) =
|
||||
result = newStmtList()
|
||||
|
||||
|
@ -132,7 +132,7 @@ macro montyRedc2x_gen[N: static int](
|
|||
|
||||
let t = repackRegisters(v, u[N])
|
||||
|
||||
if spareBits >= 1:
|
||||
if hasSpareBit:
|
||||
ctx.finalSubNoCarry(r, u, M, t)
|
||||
else:
|
||||
ctx.finalSubCanOverflow(r, u, M, t, hi)
|
||||
|
@ -145,7 +145,7 @@ func montRed_asm_adx_bmi2*[N: static int](
|
|||
a: array[N*2, SecretWord],
|
||||
M: array[N, SecretWord],
|
||||
m0ninv: BaseType,
|
||||
spareBits: static int
|
||||
hasSpareBit: static bool
|
||||
) =
|
||||
## Constant-time Montgomery reduction
|
||||
montyRedc2x_gen(r, a, M, m0ninv, spareBits)
|
||||
montyRedc2x_adx_gen(r, a, M, m0ninv, hasSpareBit)
|
||||
|
|
|
@ -133,7 +133,7 @@ func mul_asm*[rLen, aLen, bLen: static int](r: var Limbs[rLen], a: Limbs[aLen],
|
|||
# Squaring
|
||||
# -----------------------------------------------------------------------------------------------
|
||||
|
||||
macro square_gen[rLen, aLen: static int](r: var Limbs[rLen], a: Limbs[aLen]) =
|
||||
macro sqr_gen*[rLen, aLen: static int](r: var Limbs[rLen], a: Limbs[aLen]) =
|
||||
## Comba squaring generator
|
||||
## `a` and `r` can have a different number of limbs
|
||||
## if `r`.limbs.len < a.limbs.len * 2
|
||||
|
@ -240,4 +240,4 @@ macro square_gen[rLen, aLen: static int](r: var Limbs[rLen], a: Limbs[aLen]) =
|
|||
func square_asm*[rLen, aLen: static int](r: var Limbs[rLen], a: Limbs[aLen]) =
|
||||
## Multi-precision Squaring
|
||||
## Assumes r doesn't alias a
|
||||
square_gen(r, a)
|
||||
sqr_gen(r, a)
|
||||
|
|
|
@ -40,8 +40,10 @@ proc mulx_by_word(
|
|||
word0: Operand
|
||||
) =
|
||||
## Multiply the `a[0..<N]` by `word`
|
||||
## and store in `[t:r0]`
|
||||
## with [t:r0] = tn, tn-1, ... t1, r0
|
||||
## and store in `[t[n..1]:r0]`
|
||||
## with [t[n..1]:r0] = tn, tn-1, ... t1, r0
|
||||
## This assumes that t will be rotated left and so
|
||||
## t1 is in t[0] and tn in t[n-1]
|
||||
doAssert a.len + 1 == t.len
|
||||
let N = a.len
|
||||
|
||||
|
@ -76,8 +78,10 @@ proc mulaccx_by_word(
|
|||
word: Operand
|
||||
) =
|
||||
## Multiply the `a[0..<N]` by `word`
|
||||
## and store in `[t:r0]`
|
||||
## with [t:r0] = tn, tn-1, ... t1, r0
|
||||
## and store in `[t[n..0]:r0]`
|
||||
## with [t[n..0]:r0] = tn, tn-1, ... t1, r0
|
||||
## This assumes that t will be rotated left and so
|
||||
## t1 is in t[0] and tn in t[n-1]
|
||||
doAssert a.len + 1 == t.len
|
||||
let N = min(a.len, r.len)
|
||||
let hi = t[a.len]
|
||||
|
@ -130,7 +134,6 @@ macro mulx_gen[rLen, aLen, bLen: static int](rx: var Limbs[rLen], ax: Limbs[aLen
|
|||
var # If aLen is too big, we need to spill registers. TODO.
|
||||
t = init(OperandArray, nimSymbol = ident"t", tSlots, ElemsInReg, Output_EarlyClobber)
|
||||
|
||||
|
||||
# Prologue
|
||||
let tsym = t.nimSymbol
|
||||
result.add quote do:
|
||||
|
@ -173,131 +176,516 @@ func mul_asm_adx_bmi2*[rLen, aLen, bLen: static int](r: var Limbs[rLen], a: Limb
|
|||
|
||||
# Squaring
|
||||
# -----------------------------------------------------------------------------------------------
|
||||
# TODO: We use 16 registers but GCC/Clang still complain :/
|
||||
#
|
||||
# Strategy:
|
||||
# We want to use the same scheduling as mul_asm_adx_bmi2
|
||||
# and so process `a[0..<N]` by `word`
|
||||
# and store the intermediate result in `[t[n..1]:r0]`
|
||||
#
|
||||
# However for squarings, all the multiplications a[i,j] * a[i,j]
|
||||
# with i != j occurs twice, hence we can do them only once and double them at an opportune time.
|
||||
#
|
||||
# Assuming a 4 limbs bigint we have the following multiplications to do:
|
||||
#
|
||||
# a₃a₂a₁a₀
|
||||
# * a₃a₂a₁a₀
|
||||
# ---------------------------
|
||||
# a₀a₀
|
||||
# a₁a₁
|
||||
# a₂a₂
|
||||
# a₃a₃
|
||||
#
|
||||
# a₁a₀ |
|
||||
# a₂a₀ |
|
||||
# a₃a₀ |
|
||||
# | * 2
|
||||
# a₂a₁ |
|
||||
# a₃a₁ |
|
||||
# |
|
||||
# a₃a₂ |
|
||||
#
|
||||
# r₇r₆r₅r₄r₃r₂r₁r₀
|
||||
#
|
||||
# The multiplication strategy is to mulx+adox+adcx on a diagonal
|
||||
# handling both carry into next mul and partial sums carry into t
|
||||
# then saving the lowest word in t into r.
|
||||
#
|
||||
# We want `t` of size N+1 with N the number of limbs just like multiplication,
|
||||
# and reuse the multiplication algorithm
|
||||
# this means that we need to reorganize scheduling like so to maximize utilization
|
||||
#
|
||||
# a₃ a₂ a₁ a₀
|
||||
# * a₃ a₂ a₁ a₀
|
||||
# ------------------------------
|
||||
# a₀*a₀
|
||||
# a₁*a₁
|
||||
# a₂*a₂
|
||||
# a₃*a₃
|
||||
#
|
||||
# a₂*a₁ a₁*a₀ |
|
||||
# a₃*a₁ a₂*a₀ | * 2
|
||||
# a₃*a₂ a₃*a₀ |
|
||||
#
|
||||
# r₇ r₆ r₅ r₄ r₃ r₂ r₁ r₀
|
||||
#
|
||||
# Note that while processing the second diagonal we do
|
||||
# a₂*a₁ then a₃*a₁ then we change word to a₃*a₂.
|
||||
#
|
||||
# We want to use an index as much as possible in the diagonal.
|
||||
# - There is probably a clever solution using graphs
|
||||
# - https://en.wikipedia.org/wiki/Longest_path_problem
|
||||
# - https://en.wikipedia.org/wiki/Longest_increasing_subsequence
|
||||
# - or polyhedral optimization: http://playground.pollylabs.org/
|
||||
#
|
||||
# but we only care about 4*4 and 6*6 at the moment, for 6*6 the schedule is
|
||||
# a₅ a₄ a₃ a₂ a₁ a₀
|
||||
# * a₅ a₄ a₃ a₂ a₁ a₀
|
||||
# -------------------------------------
|
||||
# a₀*a₀
|
||||
# a₁*a₁
|
||||
# a₂*a₂
|
||||
# a₃*a₃
|
||||
# a₄*a₄
|
||||
# a₅*a₅
|
||||
#
|
||||
# a₃*a₂ a₂*a₁ a₁*a₀ |
|
||||
# a₄*a₂ a₃*a₁ a₂*a₀ |
|
||||
# a₄*a₃ a₄*a₁ a₃*a₀ | * 2
|
||||
# a₅*a₃ a₅*a₁ a₄*a₀ |
|
||||
# a₅*a₄ a₅*a₂ a₅*a₀ |
|
||||
#
|
||||
#
|
||||
# r₁₁ r₁₀ r₉ r₈ r₇ r₆ r₅ r₄ r₃ r₂ r₁ r₀
|
||||
|
||||
# macro sqrx_gen[rLen, aLen: static int](rx: var Limbs[rLen], ax: Limbs[aLen]) =
|
||||
# ## Squaring
|
||||
# ## `a` and `r` can have a different number of limbs
|
||||
# ## if `r`.limbs.len < a.limbs.len * 2
|
||||
# ## The result will be truncated, i.e. it will be
|
||||
# ## a² (mod (2^WordBitwidth)^r.limbs.len)
|
||||
# ##
|
||||
# ## Assumes r doesn't aliases a
|
||||
# result = newStmtList()
|
||||
#
|
||||
# var ctx = init(Assembler_x86, BaseType)
|
||||
# let
|
||||
# # Register count with 6 limbs:
|
||||
# # r + a + rax + rdx = 4
|
||||
# # t = 2 * a.len = 12
|
||||
# # We use the full x86 register set.
|
||||
#
|
||||
# r = init(OperandArray, nimSymbol = rx, rLen, PointerInReg, InputOutput)
|
||||
# a = init(OperandArray, nimSymbol = ax, aLen, PointerInReg, Input)
|
||||
#
|
||||
# N = a.len
|
||||
# tSlots = a.len * 2
|
||||
# # If aLen is too big, we need to spill registers. TODO.
|
||||
# t = init(OperandArray, nimSymbol = ident"t", tSlots, ElemsInReg, Output_EarlyClobber)
|
||||
#
|
||||
# # MULX requires RDX
|
||||
# rRDX = Operand(
|
||||
# desc: OperandDesc(
|
||||
# asmId: "[rdx]",
|
||||
# nimSymbol: ident"rdx",
|
||||
# rm: RDX,
|
||||
# constraint: Output_EarlyClobber,
|
||||
# cEmit: "rdx"
|
||||
# )
|
||||
# )
|
||||
#
|
||||
# # Scratch spaces for carries
|
||||
# rRAX = Operand(
|
||||
# desc: OperandDesc(
|
||||
# asmId: "[rax]",
|
||||
# nimSymbol: ident"rax",
|
||||
# rm: RAX,
|
||||
# constraint: Output_EarlyClobber,
|
||||
# cEmit: "rax"
|
||||
# )
|
||||
# )
|
||||
#
|
||||
# # Prologue
|
||||
# # -------------------------------
|
||||
# let tsym = t.nimSymbol
|
||||
# let eax = rRAX.desc.nimSymbol
|
||||
# let edx = rRDX.desc.nimSymbol
|
||||
# result.add quote do:
|
||||
# var `tsym`{.noInit.}: array[`N`, BaseType]
|
||||
# var `eax`{.noInit.}, `edx`{.noInit.}: BaseType
|
||||
#
|
||||
# # Algorithm
|
||||
# # -------------------------------
|
||||
#
|
||||
# block: # Triangle
|
||||
# # i = 0
|
||||
# # ----------------
|
||||
# ctx.mov rRDX, a[0]
|
||||
# # Put a[1..<N] in unused registers, 4 mov per cycle on x86
|
||||
# for i in 1 ..< N:
|
||||
# ctx.mov t[i+N], a[i]
|
||||
#
|
||||
# let # Carry handlers
|
||||
# hi = r.reuseRegister()
|
||||
# lo = rRAX
|
||||
#
|
||||
# for j in 1 ..< N:
|
||||
# # (carry, t[j]) <- a[j] * a[0] with a[j] in t[j+N]
|
||||
# ctx.mulx t[j], rRAX, t[j+N], rdx
|
||||
# if j == 1:
|
||||
# ctx.add t[j-1], rRAX
|
||||
# else:
|
||||
# ctx.adc t[j-1], rRAX
|
||||
# ctx.adc t[N-1], 0
|
||||
#
|
||||
# for i in 1 ..< N-1:
|
||||
# ctx.comment " Process squaring triangle " & $i
|
||||
# ctx.mov rRDX, a[i]
|
||||
# ctx.`xor` t[i+N], t[i+N] # Clear flags
|
||||
# for j in i+1 ..< N:
|
||||
# ctx.mulx hi, lo, t[j+N], rdx
|
||||
# ctx.adox t[i+j], lo
|
||||
# if j == N-1:
|
||||
# break
|
||||
# ctx.adcx t[i+j+1], hi
|
||||
#
|
||||
# ctx.comment " Accumulate last carries in i+N word"
|
||||
# # t[i+N] is already 0
|
||||
# ctx.adcx hi, t[i+N]
|
||||
# ctx.adox t[i+N], hi
|
||||
#
|
||||
# block:
|
||||
# ctx.comment "Finish: (t[2*i+1], t[2*i]) <- 2*t[2*i] + a[i]*a[i]"
|
||||
#
|
||||
# # Restore result
|
||||
# ctx.mov r.reuseRegister(), xmm0
|
||||
#
|
||||
# ctx.mov rRDX, a[0]
|
||||
#
|
||||
# # (t[2*i+1], t[2*i]) <- 2*t[2*i] + a[i]*a[i]
|
||||
# for i in 0 ..< N:
|
||||
# ctx.mulx rRAX, rRDX, a[i], rdx
|
||||
# ctx.add t[2*i], t[2*i]
|
||||
# ctx.adc t[2*i+1], 0
|
||||
# ctx.add t[2*i], rRDX
|
||||
# if i != N - 1:
|
||||
# ctx.mov rRDX, a[i+1]
|
||||
# ctx.adc t[2*i+1], rRAX
|
||||
# ctx.mov r[i], t[i]
|
||||
#
|
||||
# # Move the rest
|
||||
# for i in N ..< min(rLen, 2*N):
|
||||
# ctx.mov r[i], t[i]
|
||||
#
|
||||
# # Codegen
|
||||
# result.add ctx.generate
|
||||
#
|
||||
# func square_asm_adx_bmi2*[rLen, aLen: static int](r: var Limbs[rLen], a: Limbs[aLen]) =
|
||||
# ## Multi-precision Squaring
|
||||
# ## Assumes r doesn't alias a
|
||||
# sqrx_gen(r, a)
|
||||
template merge_diag_and_partsum(r, a, hi, lo, zero, i): untyped =
|
||||
ctx.mulx hi, lo, a[i], rdx
|
||||
if i+1 < a.len:
|
||||
ctx.mov rdx, a[i+1] # prepare next iteration
|
||||
if i != 0:
|
||||
ctx.adox lo, r[2*i]
|
||||
ctx.adcx lo, r[2*i]
|
||||
ctx.mov r[2*i], lo
|
||||
if i+1 < a.len:
|
||||
ctx.adox hi, r[2*i+1]
|
||||
ctx.adcx hi, r[2*i+1]
|
||||
else: # finish carry chain
|
||||
ctx.adox hi, zero
|
||||
ctx.adcx hi, zero
|
||||
ctx.mov r[2*i+1], hi
|
||||
|
||||
func sqrx_gen4L(ctx: var Assembler_x86, r, a: OperandArray, t: var OperandArray) =
|
||||
# a₃ a₂ a₁ a₀
|
||||
# * a₃ a₂ a₁ a₀
|
||||
# ------------------------------
|
||||
# a₀*a₀
|
||||
# a₁*a₁
|
||||
# a₂*a₂
|
||||
# a₃*a₃
|
||||
#
|
||||
# a₂*a₁ a₁*a₀ |
|
||||
# a₃*a₁ a₂*a₀ | * 2
|
||||
# a₃*a₂ a₃*a₀ |
|
||||
#
|
||||
# r₇ r₆ r₅ r₄ r₃ r₂ r₁ r₀
|
||||
|
||||
# First diagonal. a₀ * [aₙ₋₁ .. a₂ a₁]
|
||||
# ------------------------------------
|
||||
# This assumes that t will be rotated left and so
|
||||
# t1 is in t[0] and tn in t[n-1]
|
||||
ctx.mov rdx, a[0]
|
||||
ctx.`xor` rax, rax # clear flags
|
||||
|
||||
ctx.comment "a₁*a₀"
|
||||
ctx.mulx t[1], rax, a[1], rdx # t₁ partial sum of r₂
|
||||
ctx.mov r[1], rax
|
||||
|
||||
ctx.comment "a₂*a₀"
|
||||
ctx.mulx t[2], rax, a[2], rdx # t₂ partial sum of r₃
|
||||
ctx.add t[1], rax
|
||||
ctx.mov r[2], t[1] # r₂ finished
|
||||
|
||||
ctx.comment "a₃*a₀"
|
||||
ctx.mulx t[3], rax, a[3], rdx # t₃ partial sum of r₄
|
||||
ctx.mov rdx, a[1] # prepare next iteration
|
||||
ctx.adc t[2], rax
|
||||
ctx.adc t[3], 0 # final carry in r₄
|
||||
|
||||
# Second diagonal, a₂*a₁, a₃*a₁, a₃*a₂
|
||||
# ------------------------------------
|
||||
|
||||
ctx.`xor` t[a.len], t[a.len] # Clear flags and upper word
|
||||
t.rotateLeft() # Our schema are big-endian (rotate right)
|
||||
t.rotateLeft() # but we are little-endian (rotateLeft)
|
||||
# Partial sums: t₀ is r₃, t₁ is r₄, t₂ is r₅, t₃ is r₆
|
||||
let hi = t[a.len]
|
||||
|
||||
ctx.comment "a₂*a₁"
|
||||
ctx.mulx hi, rax, a[2], rdx
|
||||
ctx.adox t[0], rax # t₀ partial sum r₃
|
||||
ctx.mov r[3], t[0] # r₃ finished
|
||||
ctx.adcx t[1], hi # t₁ partial sum r₄
|
||||
|
||||
ctx.comment "a₃*a₁"
|
||||
ctx.mulx hi, rax, a[3], rdx
|
||||
ctx.mov rdx, a[2] # prepare next iteration
|
||||
ctx.adox t[1], rax # t₁ partial sum r₄
|
||||
ctx.mov r[4], t[1] # r₄ finished
|
||||
ctx.adcx t[2], hi # t₂ partial sum r₅
|
||||
|
||||
ctx.comment "a₃*a₂"
|
||||
ctx.mulx hi, rax, a[3], rdx
|
||||
ctx.mov rdx, 0 # Set to 0 without clearing flags
|
||||
ctx.adox t[2], rax # t₂ partial sum r₅
|
||||
ctx.mov r[5], t[2] # r₅ finished
|
||||
ctx.adcx hi, rdx # Terminate carry chains
|
||||
ctx.adox hi, rdx
|
||||
ctx.mov rdx, a[0] # prepare next iteration
|
||||
ctx.mov r[6], hi # r₆ finished
|
||||
|
||||
# a[i] * a[i] + 2 * r[2n-1 .. 1]
|
||||
# ------------------------------
|
||||
#
|
||||
# a₃ a₂ a₁ a₀
|
||||
# * a₃ a₂ a₁ a₀
|
||||
# ------------------------------
|
||||
# a₀*a₀
|
||||
# a₁*a₁
|
||||
# a₂*a₂
|
||||
# a₃*a₃
|
||||
#
|
||||
# a₂*a₁ a₁*a₀ |
|
||||
# a₃*a₁ a₂*a₀ | * 2
|
||||
# a₃*a₂ a₃*a₀ |
|
||||
#
|
||||
# r₇ r₆ r₅ r₄ r₃ r₂ r₁ r₀
|
||||
|
||||
# a₀ in RDX
|
||||
var
|
||||
hi1 = hi
|
||||
lo1 = rax
|
||||
var
|
||||
hi2 = t[1]
|
||||
lo2 = t[0]
|
||||
|
||||
ctx.comment "ai*ai + 2*r[1..<2*n-2]"
|
||||
let zero = t[2]
|
||||
ctx.`xor` zero, zero # clear flags, break dependency chains
|
||||
|
||||
merge_diag_and_partsum(r, a, hi1, lo1, zero, 0)
|
||||
merge_diag_and_partsum(r, a, hi2, lo2, zero, 1)
|
||||
merge_diag_and_partsum(r, a, hi1, lo1, zero, 2)
|
||||
merge_diag_and_partsum(r, a, hi2, lo2, zero, 3)
|
||||
|
||||
|
||||
func sqrx_gen6L(ctx: var Assembler_x86, r, a: OperandArray, t: var OperandArray) =
|
||||
# a₅ a₄ a₃ a₂ a₁ a₀
|
||||
# * a₅ a₄ a₃ a₂ a₁ a₀
|
||||
# -------------------------------------
|
||||
# a₀*a₀
|
||||
# a₁*a₁
|
||||
# a₂*a₂
|
||||
# a₃*a₃
|
||||
# a₄*a₄
|
||||
# a₅*a₅
|
||||
#
|
||||
# a₃*a₂ a₂*a₁ a₁*a₀ |
|
||||
# a₄*a₂ a₃*a₁ a₂*a₀ |
|
||||
# a₄*a₃ a₄*a₁ a₃*a₀ | * 2
|
||||
# a₅*a₃ a₅*a₁ a₄*a₀ |
|
||||
# a₅*a₄ a₅*a₂ a₅*a₀ |
|
||||
#
|
||||
#
|
||||
# r₁₁ r₁₀ r₉ r₈ r₇ r₆ r₅ r₄ r₃ r₂ r₁ r₀
|
||||
|
||||
# First diagonal. a₀ * [aₙ₋₁ .. a₂ a₁]
|
||||
# ------------------------------------
|
||||
# This assumes that t will be rotated left and so
|
||||
# t1 is in t[0] and tn in t[n-1]
|
||||
ctx.mov rdx, a[0]
|
||||
ctx.`xor` rax, rax # clear flags
|
||||
|
||||
ctx.comment "a₁*a₀"
|
||||
ctx.mulx t[1], rax, a[1], rdx # t₁ partial sum of r₂
|
||||
ctx.mov r[1], rax
|
||||
|
||||
ctx.comment "a₂*a₀"
|
||||
ctx.mulx t[2], rax, a[2], rdx # t₂ partial sum of r₃
|
||||
ctx.add t[1], rax
|
||||
ctx.mov r[2], t[1] # r₂ finished
|
||||
|
||||
ctx.comment "a₃*a₀"
|
||||
ctx.mulx t[3], rax, a[3], rdx # t₃ partial sum of r₄
|
||||
ctx.adc t[2], rax
|
||||
|
||||
ctx.comment "a₄*a₀"
|
||||
ctx.mulx t[4], rax, a[4], rdx # t₄ partial sum of r₅
|
||||
ctx.adc t[3], rax
|
||||
|
||||
ctx.comment "a₅*a₀"
|
||||
ctx.mulx t[5], rax, a[5], rdx # t₅ partial sum of r₆
|
||||
ctx.mov rdx, a[1] # prepare next iteration
|
||||
ctx.adc t[4], rax
|
||||
ctx.adc t[5], 0 # final carry in r₆
|
||||
|
||||
# Second diagonal, a₂*a₁, a₃*a₁, a₄*a₁, a₅*a₁, a₅*a₂
|
||||
# --------------------------------------------------
|
||||
|
||||
ctx.`xor` t[a.len], t[a.len] # Clear flags and upper word
|
||||
t.rotateLeft() # Our schema are big-endian (rotate right)
|
||||
t.rotateLeft() # but we are little-endian (rotateLeft)
|
||||
# Partial sums: t₀ is r₃, t₁ is r₄, t₂ is r₅, t₃ is r₆, ...
|
||||
block:
|
||||
let hi = t[a.len]
|
||||
|
||||
ctx.comment "a₂*a₁"
|
||||
ctx.mulx hi, rax, a[2], rdx
|
||||
ctx.adox t[0], rax # t₀ partial sum r₃
|
||||
ctx.mov r[3], t[0] # r₃ finished
|
||||
ctx.adcx t[1], hi # t₁ partial sum r₄
|
||||
|
||||
ctx.comment "a₃*a₁"
|
||||
ctx.mulx hi, rax, a[3], rdx
|
||||
ctx.adox t[1], rax # t₁ partial sum r₄
|
||||
ctx.mov r[4], t[1] # r₄ finished
|
||||
ctx.adcx t[2], hi # t₂ partial sum r₅
|
||||
|
||||
ctx.comment "a₄*a₁"
|
||||
ctx.mulx hi, rax, a[4], rdx
|
||||
ctx.adox t[2], rax # t₂ partial sum r₅
|
||||
ctx.adcx t[3], hi # t₃ partial sum r₆
|
||||
|
||||
ctx.comment "a₅*a₁"
|
||||
ctx.mulx hi, rax, a[5], rdx
|
||||
ctx.mov rdx, a[2] # prepare next iteration
|
||||
ctx.adox t[3], rax # t₃ partial sum r₆
|
||||
ctx.adcx t[4], hi # t₄ partial sum r₇
|
||||
|
||||
ctx.comment "a₅*a₂"
|
||||
ctx.mulx t[5], rax, a[5], rdx
|
||||
ctx.mov hi, 0 # Set to 0 `hi` (== t[6] = r₉) without clearing flags
|
||||
ctx.adox t[4], rax # t₄ partial sum r₇
|
||||
ctx.adcx t[5], hi # t₅ partial sum r₈, terminate carry chains
|
||||
ctx.adox t[5], hi
|
||||
|
||||
# Third diagonal, a₃*a₂, a₄*a₂, a₄*a₃, a₅*a₃, a₅*a₄
|
||||
# --------------------------------------------------
|
||||
t.rotateLeft()
|
||||
t.rotateLeft()
|
||||
# Partial sums: t₀ is r₅, t₁ is r₆, t₂ is r₇, t₃ is r₈, t₄ is r₉, t₅ is r₁₀
|
||||
# t₄ is r₉ and was set to zero, a₂ in RDX
|
||||
block:
|
||||
let hi = t[a.len]
|
||||
ctx.`xor` hi, hi # t₅ is r₁₀ = 0, break dependency chains
|
||||
|
||||
ctx.comment "a₃*a₂"
|
||||
ctx.mulx hi, rax, a[3], rdx
|
||||
ctx.adox t[0], rax # t₀ partial sum r₅
|
||||
ctx.mov r[5], t[0] # r₅ finished
|
||||
ctx.adcx t[1], hi # t₁ partial sum r₆
|
||||
|
||||
ctx.comment "a₄*a₂"
|
||||
ctx.mulx hi, rax, a[4], rdx
|
||||
ctx.mov rdx, a[3] # prepare next iteration
|
||||
ctx.adox t[1], rax # t₁ partial sum r₆
|
||||
ctx.mov r[6], t[1] # r₆ finished
|
||||
ctx.adcx t[2], hi # t₂ partial sum r₇
|
||||
|
||||
ctx.comment "a₄*a₃"
|
||||
ctx.mulx hi, rax, a[4], rdx
|
||||
ctx.adox t[2], rax # t₂ partial sum r₇
|
||||
ctx.mov r[7], t[2] # r₇ finished
|
||||
ctx.adcx t[3], hi # t₃ partial sum r₈
|
||||
|
||||
ctx.comment "a₅*a₃"
|
||||
ctx.mulx hi, rax, a[5], rdx
|
||||
ctx.mov rdx, a[4] # prepare next iteration
|
||||
ctx.adox t[3], rax # t₃ partial sum r₈
|
||||
ctx.mov r[8], t[3] # r₈ finished
|
||||
ctx.adcx t[4], hi # t₄ partial sum r₉ (was zero)
|
||||
|
||||
ctx.comment "a₅*a₄"
|
||||
ctx.mulx hi, rax, a[5], rdx
|
||||
ctx.mov rdx, 0 # Set to 0 without clearing flags
|
||||
ctx.adox t[4], rax # t₄ partial sum r₉
|
||||
ctx.mov r[9], t[4] # r₉ finished
|
||||
ctx.adcx hi, rdx # Terminate carry chains
|
||||
ctx.adox hi, rdx
|
||||
ctx.mov rdx, a[0] # prepare next iteration
|
||||
ctx.mov r[10], hi # r₁₀ finished
|
||||
|
||||
# a[i] * a[i] + 2 * r[2n-1 .. 1]
|
||||
# -------------------------------------
|
||||
#
|
||||
# a₅ a₄ a₃ a₂ a₁ a₀
|
||||
# * a₅ a₄ a₃ a₂ a₁ a₀
|
||||
# -------------------------------------
|
||||
# a₀*a₀
|
||||
# a₁*a₁
|
||||
# a₂*a₂
|
||||
# a₃*a₃
|
||||
# a₄*a₄
|
||||
# a₅*a₅
|
||||
#
|
||||
# a₃*a₂ a₂*a₁ a₁*a₀ |
|
||||
# a₄*a₂ a₃*a₁ a₂*a₀ |
|
||||
# a₄*a₃ a₄*a₁ a₃*a₀ | * 2
|
||||
# a₅*a₃ a₅*a₁ a₄*a₀ |
|
||||
# a₅*a₄ a₅*a₂ a₅*a₀ |
|
||||
#
|
||||
#
|
||||
# r₁₁ r₁₀ r₉ r₈ r₇ r₆ r₅ r₄ r₃ r₂ r₁ r₀
|
||||
|
||||
# a₀ in RDX
|
||||
var
|
||||
hi1 = t[a.len]
|
||||
lo1 = rax
|
||||
var
|
||||
hi2 = t[1]
|
||||
lo2 = t[0]
|
||||
|
||||
ctx.comment "ai*ai + 2*r[1..<2*n-2]"
|
||||
let zero = t[2]
|
||||
ctx.`xor` zero, zero # clear flags, break dependency chains
|
||||
|
||||
merge_diag_and_partsum(r, a, hi1, lo1, zero, 0)
|
||||
merge_diag_and_partsum(r, a, hi2, lo2, zero, 1)
|
||||
merge_diag_and_partsum(r, a, hi1, lo1, zero, 2)
|
||||
merge_diag_and_partsum(r, a, hi2, lo2, zero, 3)
|
||||
merge_diag_and_partsum(r, a, hi1, lo1, zero, 4)
|
||||
merge_diag_and_partsum(r, a, hi2, lo2, zero, 5)
|
||||
|
||||
macro sqrx_gen*[rLen, aLen: static int](rx: var Limbs[rLen], ax: Limbs[aLen]) =
|
||||
## Squaring
|
||||
## `a` and `r` can have a different number of limbs
|
||||
## if `r`.limbs.len < a.limbs.len * 2
|
||||
## The result will be truncated, i.e. it will be
|
||||
## a² (mod (2^WordBitwidth)^r.limbs.len)
|
||||
##
|
||||
## Assumes r doesn't aliases a
|
||||
result = newStmtList()
|
||||
|
||||
var ctx = init(Assembler_x86, BaseType)
|
||||
let
|
||||
# Register count with 6 limbs:
|
||||
# r + a + rax + rdx = 4
|
||||
# t = 2 * a.len = 12
|
||||
# We use the full x86 register set.
|
||||
|
||||
r = init(OperandArray, nimSymbol = rx, rLen, PointerInReg, InputOutput)
|
||||
a = init(OperandArray, nimSymbol = ax, aLen, PointerInReg, Input)
|
||||
|
||||
# MULX requires RDX
|
||||
|
||||
tSlots = aLen+1 # Extra for high word
|
||||
|
||||
var # If aLen is too big, we need to spill registers. TODO.
|
||||
t = init(OperandArray, nimSymbol = ident"t", tSlots, ElemsInReg, Output_EarlyClobber)
|
||||
|
||||
# Prologue
|
||||
# -------------------------------
|
||||
let tsym = t.nimSymbol
|
||||
result.add quote do:
|
||||
var `tsym`{.noInit.}: array[`tSlots`, BaseType]
|
||||
|
||||
if aLen == 4:
|
||||
ctx.sqrx_gen4L(r, a, t)
|
||||
elif aLen == 6:
|
||||
ctx.sqrx_gen6L(r, a, t)
|
||||
else:
|
||||
error: "Not implemented"
|
||||
|
||||
# Codegen
|
||||
result.add ctx.generate
|
||||
|
||||
func square_asm_adx_bmi2*[rLen, aLen: static int](r: var Limbs[rLen], a: Limbs[aLen]) =
|
||||
## Multi-precision Squaring
|
||||
## Assumes r doesn't alias a
|
||||
sqrx_gen(r, a)
|
||||
|
||||
|
||||
# Sanity checks
|
||||
# ----------------------------------------------------------
|
||||
|
||||
when isMainModule:
|
||||
import
|
||||
../../config/[type_bigint, common],
|
||||
../../arithmetic/limbs
|
||||
|
||||
type SW = SecretWord
|
||||
|
||||
# 4 limbs
|
||||
# --------------------------------
|
||||
|
||||
proc mainSqr1() =
|
||||
var a = [SW 0xFFFF_FFFF_FFFF_FFFF'u64, SW 0xFFFF_FFFF_FFFF_FFFF'u64, SW 0xFFFF_FFFF_FFFF_FFFF'u64, SW 0xFFFF_FFFF_FFFF_FFFF'u64]
|
||||
|
||||
var a2x, expected: Limbs[8]
|
||||
|
||||
a2x.square_asm_adx_bmi2(a)
|
||||
expected.mul_asm_adx_bmi2(a, a)
|
||||
debugecho "--------------------------------"
|
||||
debugecho "before:"
|
||||
debugecho " a : ", a.toString()
|
||||
debugecho "after:"
|
||||
debugecho " a2x: ", a2x.toString()
|
||||
debugecho " ref: ", expected.toString()
|
||||
|
||||
doAssert bool(a2x == expected)
|
||||
|
||||
proc mainSqr2() =
|
||||
var a = [SW 0x2'u64, SW 0x1'u64, SW 0x1'u64, SW 0x2'u64]
|
||||
|
||||
var a2x, expected: Limbs[8]
|
||||
|
||||
a2x.square_asm_adx_bmi2(a)
|
||||
expected.mul_asm_adx_bmi2(a, a)
|
||||
debugecho "--------------------------------"
|
||||
debugecho "before:"
|
||||
debugecho " a : ", a.toString()
|
||||
debugecho "after:"
|
||||
debugecho " a2x: ", a2x.toString()
|
||||
debugecho " ref: ", expected.toString()
|
||||
|
||||
doAssert bool(a2x == expected)
|
||||
|
||||
mainSqr1()
|
||||
mainSqr2()
|
||||
|
||||
# 6 limbs
|
||||
# --------------------------------
|
||||
|
||||
|
||||
proc mainSqr3() =
|
||||
var a = [SW 0xFFFF_FFFF_FFFF_FFFF'u64, SW 0xFFFF_FFFF_FFFF_FFFF'u64, SW 0xFFFF_FFFF_FFFF_FFFF'u64, SW 0xFFFF_FFFF_FFFF_FFFF'u64, SW 0xFFFF_FFFF_FFFF_FFFF'u64, SW 0xFFFF_FFFF_FFFF_FFFF'u64]
|
||||
|
||||
var a2x, expected: Limbs[12]
|
||||
|
||||
a2x.square_asm_adx_bmi2(a)
|
||||
expected.mul_asm_adx_bmi2(a, a)
|
||||
debugecho "--------------------------------"
|
||||
debugecho "before:"
|
||||
debugecho " a : ", a.toString()
|
||||
debugecho "after:"
|
||||
debugecho " a2x: ", a2x.toString()
|
||||
debugecho " ref: ", expected.toString()
|
||||
|
||||
doAssert bool(a2x == expected)
|
||||
|
||||
proc mainSqr4() =
|
||||
var a = [SW 0x1'u64, SW 0x2'u64, SW 0x2'u64, SW 0x2'u64, SW 0x1'u64, SW 0x1'u64,]
|
||||
|
||||
var a2x, expected: Limbs[12]
|
||||
|
||||
a2x.square_asm_adx_bmi2(a)
|
||||
expected.mul_asm_adx_bmi2(a, a)
|
||||
debugecho "--------------------------------"
|
||||
debugecho "before:"
|
||||
debugecho " a : ", a.toString()
|
||||
debugecho "after:"
|
||||
debugecho " a2x: ", a2x.toString()
|
||||
debugecho " ref: ", expected.toString()
|
||||
|
||||
doAssert bool(a2x == expected)
|
||||
|
||||
mainSqr3()
|
||||
mainSqr4()
|
||||
|
|
|
@ -200,7 +200,13 @@ func square*[rLen, aLen](
|
|||
## a² (mod (2^WordBitwidth)^r.limbs.len)
|
||||
##
|
||||
## `r` must not alias ``a`` or ``b``
|
||||
when UseASM_X86_64:
|
||||
when UseASM_X86_64 and aLen in {4, 6} and rLen == 2*aLen:
|
||||
# ADX implies BMI2
|
||||
if ({.noSideEffect.}: hasAdx()):
|
||||
square_asm_adx_bmi2(r, a)
|
||||
else:
|
||||
square_asm(r, a)
|
||||
elif UseASM_X86_64:
|
||||
square_asm(r, a)
|
||||
else:
|
||||
square_comba(r, a)
|
||||
|
|
|
@ -12,7 +12,7 @@ import
|
|||
# Internal
|
||||
../config/common,
|
||||
../primitives,
|
||||
./limbs
|
||||
./limbs, ./limbs_extmul
|
||||
|
||||
when UseASM_X86_32:
|
||||
import ./assembly/limbs_asm_montred_x86
|
||||
|
@ -51,6 +51,114 @@ when UseASM_X86_64:
|
|||
# No exceptions allowed
|
||||
{.push raises: [].}
|
||||
|
||||
# Montgomery Reduction
|
||||
# ------------------------------------------------------------
|
||||
func montyRedc2x_CIOS[N: static int](
|
||||
r: var array[N, SecretWord],
|
||||
a: array[N*2, SecretWord],
|
||||
M: array[N, SecretWord],
|
||||
m0ninv: BaseType) =
|
||||
## Montgomery reduce a double-precision bigint modulo M
|
||||
# - Analyzing and Comparing Montgomery Multiplication Algorithms
|
||||
# Cetin Kaya Koc and Tolga Acar and Burton S. Kaliski Jr.
|
||||
# http://pdfs.semanticscholar.org/5e39/41ff482ec3ee41dc53c3298f0be085c69483.pdf
|
||||
#
|
||||
# - Arithmetic of Finite Fields
|
||||
# Chapter 5 of Guide to Pairing-Based Cryptography
|
||||
# Jean Luc Beuchat, Luis J. Dominguez Perez, Sylvain Duquesne, Nadia El Mrabet, Laura Fuentes-Castañeda, Francisco Rodríguez-Henríquez, 2017
|
||||
# https://www.researchgate.net/publication/319538235_Arithmetic_of_Finite_Fields
|
||||
#
|
||||
# Algorithm
|
||||
# Inputs:
|
||||
# - N number of limbs
|
||||
# - a[0 ..< 2N] (double-precision input to reduce)
|
||||
# - M[0 ..< N] The field modulus (must be odd for Montgomery reduction)
|
||||
# - m0ninv: Montgomery Reduction magic number = -1/M[0]
|
||||
# Output:
|
||||
# - r[0 ..< N], in the Montgomery domain
|
||||
# Parameters:
|
||||
# - w, the word width usually 64 on 64-bit platforms or 32 on 32-bit
|
||||
#
|
||||
# for i in 0 .. n-1:
|
||||
# C <- 0
|
||||
# m <- a[i] * m0ninv mod 2^w (i.e. simple multiplication)
|
||||
# for j in 0 .. n-1:
|
||||
# (C, S) <- a[i+j] + m * M[j] + C
|
||||
# a[i+j] <- S
|
||||
# a[i+n] += C
|
||||
# for i in 0 .. n-1:
|
||||
# r[i] = a[i+n]
|
||||
# if r >= M:
|
||||
# r -= M
|
||||
#
|
||||
# Important note: `a[i+n] += C` should propagate the carry
|
||||
# to the higher limb if any, thank you "implementation detail"
|
||||
# missing from paper.
|
||||
|
||||
var a = a # Copy "t" for mutation and ensure on stack
|
||||
var res: typeof(r) # Accumulator
|
||||
staticFor i, 0, N:
|
||||
var C = Zero
|
||||
let m = a[i] * SecretWord(m0ninv)
|
||||
staticFor j, 0, N:
|
||||
muladd2(C, a[i+j], m, M[j], a[i+j], C)
|
||||
res[i] = C
|
||||
|
||||
# This does t[i+n] += C
|
||||
# but in a separate carry chain, fused with the
|
||||
# copy "r[i] = t[i+n]"
|
||||
var carry = Carry(0)
|
||||
staticFor i, 0, N:
|
||||
addC(carry, res[i], a[i+N], res[i], carry)
|
||||
|
||||
# Final substraction
|
||||
discard res.csub(M, SecretWord(carry).isNonZero() or not(res < M))
|
||||
r = res
|
||||
|
||||
func montyRedc2x_Comba[N: static int](
|
||||
r: var array[N, SecretWord],
|
||||
a: array[N*2, SecretWord],
|
||||
M: array[N, SecretWord],
|
||||
m0ninv: BaseType) =
|
||||
## Montgomery reduce a double-precision bigint modulo M
|
||||
# We use Product Scanning / Comba multiplication
|
||||
var t, u, v = Zero
|
||||
var carry: Carry
|
||||
var z: typeof(r) # zero-init, ensure on stack and removes in-place problems in tower fields
|
||||
staticFor i, 0, N:
|
||||
staticFor j, 0, i:
|
||||
mulAcc(t, u, v, z[j], M[i-j])
|
||||
|
||||
addC(carry, v, v, a[i], Carry(0))
|
||||
addC(carry, u, u, Zero, carry)
|
||||
addC(carry, t, t, Zero, carry)
|
||||
|
||||
z[i] = v * SecretWord(m0ninv)
|
||||
mulAcc(t, u, v, z[i], M[0])
|
||||
v = u
|
||||
u = t
|
||||
t = Zero
|
||||
|
||||
staticFor i, N, 2*N-1:
|
||||
staticFor j, i-N+1, N:
|
||||
mulAcc(t, u, v, z[j], M[i-j])
|
||||
|
||||
addC(carry, v, v, a[i], Carry(0))
|
||||
addC(carry, u, u, Zero, carry)
|
||||
addC(carry, t, t, Zero, carry)
|
||||
|
||||
z[i-N] = v
|
||||
|
||||
v = u
|
||||
u = t
|
||||
t = Zero
|
||||
|
||||
addC(carry, z[N-1], v, a[2*N-1], Carry(0))
|
||||
|
||||
# Final substraction
|
||||
discard z.csub(M, SecretBool(carry) or not(z < M))
|
||||
r = z
|
||||
|
||||
# Montgomery Multiplication
|
||||
# ------------------------------------------------------------
|
||||
|
||||
|
@ -172,224 +280,66 @@ func montyMul_FIPS(r: var Limbs, a, b, M: Limbs, m0ninv: BaseType) =
|
|||
r = z
|
||||
|
||||
# Montgomery Squaring
|
||||
# ------------------------------------------------------------
|
||||
|
||||
func montySquare_CIOS_nocarry(r: var Limbs, a, M: Limbs, m0ninv: BaseType) {.used.}=
|
||||
## Montgomery Multiplication using Coarse Grained Operand Scanning (CIOS)
|
||||
## and no-carry optimization.
|
||||
## This requires the most significant word of the Modulus
|
||||
## M[^1] < high(SecretWord) shr 2 (i.e. less than 0b00111...1111)
|
||||
## https://hackmd.io/@zkteam/modular_multiplication
|
||||
|
||||
# TODO: Deactivated
|
||||
# Off-by one on 32-bit on the least significant bit
|
||||
# for Fp[BLS12-381] with inputs
|
||||
# - -0x091F02EFA1C9B99C004329E94CD3C6B308164CBE02037333D78B6C10415286F7C51B5CD7F917F77B25667AB083314B1B
|
||||
# - -0x0B7C8AFE5D43E9A973AF8649AD8C733B97D06A78CFACD214CBE9946663C3F682362E0605BC8318714305B249B505AFD9
|
||||
|
||||
# We want all the computation to be kept in registers
|
||||
# hence we use a temporary `t`, hoping that the compiler does it.
|
||||
var t: typeof(M) # zero-init
|
||||
const N = t.len
|
||||
staticFor i, 0, N:
|
||||
# Squaring
|
||||
var
|
||||
A1: Carry
|
||||
A0: SecretWord
|
||||
# (A0, t[i]) <- a[i] * a[i] + t[i]
|
||||
muladd1(A0, t[i], a[i], a[i], t[i])
|
||||
staticFor j, i+1, N:
|
||||
# (A1, A0, t[j]) <- 2*a[j]*a[i] + t[j] + (A1, A0)
|
||||
# 2*a[j]*a[i] can spill 1-bit on a 3rd word
|
||||
mulDoubleAdd2(A1, A0, t[j], a[j], a[i], t[j], A1, A0)
|
||||
|
||||
# Reduction
|
||||
# m <- (t[0] * m0ninv) mod 2^w
|
||||
# (C, _) <- m * M[0] + t[0]
|
||||
let m = t[0] * SecretWord(m0ninv)
|
||||
var C, lo: SecretWord
|
||||
muladd1(C, lo, m, M[0], t[0])
|
||||
staticFor j, 1, N:
|
||||
# (C, t[j-1]) <- m*M[j] + t[j] + C
|
||||
muladd2(C, t[j-1], m, M[j], t[j], C)
|
||||
|
||||
t[N-1] = C + A0
|
||||
|
||||
discard t.csub(M, not(t < M))
|
||||
r = t
|
||||
|
||||
func montySquare_CIOS(r: var Limbs, a, M: Limbs, m0ninv: BaseType) {.used.}=
|
||||
## Montgomery Multiplication using Coarse Grained Operand Scanning (CIOS)
|
||||
##
|
||||
## Architectural Support for Long Integer Modulo Arithmetic on Risc-Based Smart Cards
|
||||
## Johann Großschädl, 2003
|
||||
## https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=95950BAC26A728114431C0C7B425E022?doi=10.1.1.115.3276&rep=rep1&type=pdf
|
||||
##
|
||||
## Analyzing and Comparing Montgomery Multiplication Algorithms
|
||||
## Koc, Acar, Kaliski, 1996
|
||||
## https://www.semanticscholar.org/paper/Analyzing-and-comparing-Montgomery-multiplication-Ko%C3%A7-Acar/5e3941ff482ec3ee41dc53c3298f0be085c69483
|
||||
|
||||
# TODO: Deactivated
|
||||
# Off-by one on 32-bit on the least significant bit
|
||||
# for Fp[2^127 - 1] with inputs
|
||||
# - -0x75bfffefbfffffff7fd9dfd800000000
|
||||
# - -0x7ff7ffffffffffff1dfb7fafc0000000
|
||||
# Squaring the number and its opposite
|
||||
# should give the same result, but those are off-by-one
|
||||
|
||||
# We want all the computation to be kept in registers
|
||||
# hence we use a temporary `t`, hoping that the compiler does it.
|
||||
var t: typeof(M) # zero-init
|
||||
const N = t.len
|
||||
# Extra words to handle up to 2 carries t[N] and t[N+1]
|
||||
var tNp1: SecretWord
|
||||
var tN: SecretWord
|
||||
|
||||
staticFor i, 0, N:
|
||||
# Squaring
|
||||
var A1 = Carry(0)
|
||||
var A0: SecretWord
|
||||
# (A0, t[i]) <- a[i] * a[i] + t[i]
|
||||
muladd1(A0, t[i], a[i], a[i], t[i])
|
||||
staticFor j, i+1, N:
|
||||
# (A1, A0, t[j]) <- 2*a[j]*a[i] + t[j] + (A1, A0)
|
||||
# 2*a[j]*a[i] can spill 1-bit on a 3rd word
|
||||
mulDoubleAdd2(A1, A0, t[j], a[j], a[i], t[j], A1, A0)
|
||||
|
||||
var carryS: Carry
|
||||
addC(carryS, tN, tN, A0, Carry(0))
|
||||
addC(carryS, tNp1, SecretWord(A1), Zero, carryS)
|
||||
|
||||
# Reduction
|
||||
# m <- (t[0] * m0ninv) mod 2^w
|
||||
# (C, _) <- m * M[0] + t[0]
|
||||
var C, lo: SecretWord
|
||||
let m = t[0] * SecretWord(m0ninv)
|
||||
muladd1(C, lo, m, M[0], t[0])
|
||||
staticFor j, 1, N:
|
||||
# (C, t[j-1]) <- m*M[j] + t[j] + C
|
||||
muladd2(C, t[j-1], m, M[j], t[j], C)
|
||||
|
||||
# (C,t[N-1]) <- t[N] + C
|
||||
# (_, t[N]) <- t[N+1] + C
|
||||
var carryR: Carry
|
||||
addC(carryR, t[N-1], tN, C, Carry(0))
|
||||
addC(carryR, tN, tNp1, Zero, carryR)
|
||||
|
||||
discard t.csub(M, tN.isNonZero() or not(t < M)) # TODO: (t >= M) is unnecessary for prime in the form (2^64)^w
|
||||
r = t
|
||||
|
||||
# Montgomery Reduction
|
||||
# ------------------------------------------------------------
|
||||
func montyRedc2x_CIOS[N: static int](
|
||||
r: var array[N, SecretWord],
|
||||
a: array[N*2, SecretWord],
|
||||
M: array[N, SecretWord],
|
||||
m0ninv: BaseType) =
|
||||
## Montgomery reduce a double-precision bigint modulo M
|
||||
# - Analyzing and Comparing Montgomery Multiplication Algorithms
|
||||
# Cetin Kaya Koc and Tolga Acar and Burton S. Kaliski Jr.
|
||||
# http://pdfs.semanticscholar.org/5e39/41ff482ec3ee41dc53c3298f0be085c69483.pdf
|
||||
#
|
||||
# - Arithmetic of Finite Fields
|
||||
# Chapter 5 of Guide to Pairing-Based Cryptography
|
||||
# Jean Luc Beuchat, Luis J. Dominguez Perez, Sylvain Duquesne, Nadia El Mrabet, Laura Fuentes-Castañeda, Francisco Rodríguez-Henríquez, 2017
|
||||
# https://www.researchgate.net/publication/319538235_Arithmetic_of_Finite_Fields
|
||||
#
|
||||
# Algorithm
|
||||
# Inputs:
|
||||
# - N number of limbs
|
||||
# - a[0 ..< 2N] (double-precision input to reduce)
|
||||
# - M[0 ..< N] The field modulus (must be odd for Montgomery reduction)
|
||||
# - m0ninv: Montgomery Reduction magic number = -1/M[0]
|
||||
# Output:
|
||||
# - r[0 ..< N], in the Montgomery domain
|
||||
# Parameters:
|
||||
# - w, the word width usually 64 on 64-bit platforms or 32 on 32-bit
|
||||
#
|
||||
# for i in 0 .. n-1:
|
||||
# C <- 0
|
||||
# m <- a[i] * m0ninv mod 2^w (i.e. simple multiplication)
|
||||
# for j in 0 .. n-1:
|
||||
# (C, S) <- a[i+j] + m * M[j] + C
|
||||
# a[i+j] <- S
|
||||
# a[i+n] += C
|
||||
# for i in 0 .. n-1:
|
||||
# r[i] = a[i+n]
|
||||
# if r >= M:
|
||||
# r -= M
|
||||
#
|
||||
# Important note: `a[i+n] += C` should propagate the carry
|
||||
# to the higher limb if any, thank you "implementation detail"
|
||||
# missing from paper.
|
||||
|
||||
var a = a # Copy "t" for mutation and ensure on stack
|
||||
var res: typeof(r) # Accumulator
|
||||
staticFor i, 0, N:
|
||||
var C = Zero
|
||||
let m = a[i] * SecretWord(m0ninv)
|
||||
staticFor j, 0, N:
|
||||
muladd2(C, a[i+j], m, M[j], a[i+j], C)
|
||||
res[i] = C
|
||||
|
||||
# This does t[i+n] += C
|
||||
# but in a separate carry chain, fused with the
|
||||
# copy "r[i] = t[i+n]"
|
||||
var carry = Carry(0)
|
||||
staticFor i, 0, N:
|
||||
addC(carry, res[i], a[i+N], res[i], carry)
|
||||
|
||||
# Final substraction
|
||||
discard res.csub(M, SecretWord(carry).isNonZero() or not(res < M))
|
||||
r = res
|
||||
|
||||
func montyRedc2x_Comba[N: static int](
|
||||
r: var array[N, SecretWord],
|
||||
a: array[N*2, SecretWord],
|
||||
M: array[N, SecretWord],
|
||||
m0ninv: BaseType) =
|
||||
## Montgomery reduce a double-precision bigint modulo M
|
||||
# We use Product Scanning / Comba multiplication
|
||||
var t, u, v = Zero
|
||||
var carry: Carry
|
||||
var z: typeof(r) # zero-init, ensure on stack and removes in-place problems in tower fields
|
||||
staticFor i, 0, N:
|
||||
staticFor j, 0, i:
|
||||
mulAcc(t, u, v, z[j], M[i-j])
|
||||
|
||||
addC(carry, v, v, a[i], Carry(0))
|
||||
addC(carry, u, u, Zero, carry)
|
||||
addC(carry, t, t, Zero, carry)
|
||||
|
||||
z[i] = v * SecretWord(m0ninv)
|
||||
mulAcc(t, u, v, z[i], M[0])
|
||||
v = u
|
||||
u = t
|
||||
t = Zero
|
||||
|
||||
staticFor i, N, 2*N-1:
|
||||
staticFor j, i-N+1, N:
|
||||
mulAcc(t, u, v, z[j], M[i-j])
|
||||
|
||||
addC(carry, v, v, a[i], Carry(0))
|
||||
addC(carry, u, u, Zero, carry)
|
||||
addC(carry, t, t, Zero, carry)
|
||||
|
||||
z[i-N] = v
|
||||
|
||||
v = u
|
||||
u = t
|
||||
t = Zero
|
||||
|
||||
addC(carry, z[N-1], v, a[2*N-1], Carry(0))
|
||||
|
||||
# Final substraction
|
||||
discard z.csub(M, SecretBool(carry) or not(z < M))
|
||||
r = z
|
||||
# --------------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
# There are Montgomery squaring multiplications mentioned in the litterature
|
||||
# - https://hackmd.io/@zkteam/modular_multiplication if M[^1] < high(SecretWord) shr 2 (i.e. less than 0b00111...1111)
|
||||
# - Architectural Support for Long Integer Modulo Arithmetic on Risc-Based Smart Cards
|
||||
# Johann Großschädl, 2003
|
||||
# https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=95950BAC26A728114431C0C7B425E022?doi=10.1.1.115.3276&rep=rep1&type=pdf
|
||||
# - Analyzing and Comparing Montgomery Multiplication Algorithms
|
||||
# Koc, Acar, Kaliski, 1996
|
||||
# https://www.semanticscholar.org/paper/Analyzing-and-comparing-Montgomery-multiplication-Ko%C3%A7-Acar/5e3941ff482ec3ee41dc53c3298f0be085c69483
|
||||
#
|
||||
# However fuzzing the implementation showed off-by-one on certain inputs especially in 32-bit mode
|
||||
#
|
||||
# for Fp[BLS12-381] on 32 bit with inputs
|
||||
# - 0x091F02EFA1C9B99C004329E94CD3C6B308164CBE02037333D78B6C10415286F7C51B5CD7F917F77B25667AB083314B1B
|
||||
# - 0x0B7C8AFE5D43E9A973AF8649AD8C733B97D06A78CFACD214CBE9946663C3F682362E0605BC8318714305B249B505AFD9
|
||||
# for Consensys/zkteam algorithm (off by one in least significant bit)
|
||||
#
|
||||
# for Fp[2^127 - 1] with inputs
|
||||
# - -0x75bfffefbfffffff7fd9dfd800000000
|
||||
# - -0x7ff7ffffffffffff1dfb7fafc0000000
|
||||
# Squaring the number and its opposite
|
||||
# should give the same result, but those are off-by-one
|
||||
# with Großschädl algorithm
|
||||
#
|
||||
# I suspect either I did a twice the same mistake when translating 2 different algorithms
|
||||
# or there is a carry propagation constraint that prevents interleaving squaring
|
||||
# and Montgomery reduction in the following loops
|
||||
# for i in 0 ..< N:
|
||||
# for j in i+1 ..< N: # <-- squaring, notice that we start at i+1 but carries from below may still impact us.
|
||||
# ...
|
||||
# for j in 1 ..< N: # <- Montgomery reduce.
|
||||
|
||||
# Exported API
|
||||
# ------------------------------------------------------------
|
||||
|
||||
# TODO upstream, using Limbs[N] breaks semcheck
|
||||
func montyRedc2x*[N: static int](
|
||||
r: var array[N, SecretWord],
|
||||
a: array[N*2, SecretWord],
|
||||
M: array[N, SecretWord],
|
||||
m0ninv: BaseType, spareBits: static int) {.inline.} =
|
||||
## Montgomery reduce a double-precision bigint modulo M
|
||||
when UseASM_X86_64 and r.len <= 6:
|
||||
# ADX implies BMI2
|
||||
if ({.noSideEffect.}: hasAdx()):
|
||||
montRed_asm_adx_bmi2(r, a, M, m0ninv, spareBits >= 1)
|
||||
else:
|
||||
when r.len in {3..6}:
|
||||
montRed_asm(r, a, M, m0ninv, spareBits >= 1)
|
||||
else:
|
||||
montyRedc2x_CIOS(r, a, M, m0ninv)
|
||||
# montyRedc2x_Comba(r, a, M, m0ninv)
|
||||
elif UseASM_X86_64 and r.len in {3..6}:
|
||||
# TODO: Assembly faster than GCC but slower than Clang
|
||||
montRed_asm(r, a, M, m0ninv, spareBits >= 1)
|
||||
else:
|
||||
montyRedc2x_CIOS(r, a, M, m0ninv)
|
||||
# montyRedc2x_Comba(r, a, M, m0ninv)
|
||||
|
||||
func montyMul*(
|
||||
r: var Limbs, a, b, M: Limbs,
|
||||
m0ninv: static BaseType, spareBits: static int) {.inline.} =
|
||||
|
@ -431,53 +381,27 @@ func montyMul*(
|
|||
else:
|
||||
montyMul_FIPS(r, a, b, M, m0ninv)
|
||||
|
||||
func montySquare*(r: var Limbs, a, M: Limbs,
|
||||
func montySquare*[N](r: var Limbs[N], a, M: Limbs[N],
|
||||
m0ninv: static BaseType, spareBits: static int) {.inline.} =
|
||||
## Compute r <- a^2 (mod M) in the Montgomery domain
|
||||
## `m0ninv` = -1/M (mod SecretWord). Our words are 2^31 or 2^63
|
||||
|
||||
# TODO: needs optimization similar to multiplication
|
||||
montyMul(r, a, a, M, m0ninv, spareBits)
|
||||
|
||||
# when spareBits >= 2:
|
||||
# # TODO: Deactivated
|
||||
# # Off-by one on 32-bit on the least significant bit
|
||||
# # for Fp[BLS12-381] with inputs
|
||||
# # - -0x091F02EFA1C9B99C004329E94CD3C6B308164CBE02037333D78B6C10415286F7C51B5CD7F917F77B25667AB083314B1B
|
||||
# # - -0x0B7C8AFE5D43E9A973AF8649AD8C733B97D06A78CFACD214CBE9946663C3F682362E0605BC8318714305B249B505AFD9
|
||||
#
|
||||
# # montySquare_CIOS_nocarry(r, a, M, m0ninv)
|
||||
# montyMul_CIOS_nocarry(r, a, a, M, m0ninv)
|
||||
# else:
|
||||
# # TODO: Deactivated
|
||||
# # Off-by one on 32-bit for Fp[2^127 - 1] with inputs
|
||||
# # - -0x75bfffefbfffffff7fd9dfd800000000
|
||||
# # - -0x7ff7ffffffffffff1dfb7fafc0000000
|
||||
# # Squaring the number and its opposite
|
||||
# # should give the same result, but those are off-by-one
|
||||
#
|
||||
# # montySquare_CIOS(r, a, M, m0ninv) # TODO <--- Fix this
|
||||
# montyMul_FIPS(r, a, a, M, m0ninv)
|
||||
|
||||
# TODO upstream, using Limbs[N] breaks semcheck
|
||||
func montyRedc2x*[N: static int](
|
||||
r: var array[N, SecretWord],
|
||||
a: array[N*2, SecretWord],
|
||||
M: array[N, SecretWord],
|
||||
m0ninv: BaseType, spareBits: static int) {.inline.} =
|
||||
## Montgomery reduce a double-precision bigint modulo M
|
||||
when UseASM_X86_64 and r.len <= 6:
|
||||
when UseASM_X86_64 and a.len in {4, 6}:
|
||||
# ADX implies BMI2
|
||||
if ({.noSideEffect.}: hasAdx()):
|
||||
montRed_asm_adx_bmi2(r, a, M, m0ninv, spareBits)
|
||||
# With ADX and spare bit, montSquare_CIOS_asm_adx_bmi2
|
||||
# which uses unfused squaring then Montgomery reduction
|
||||
# is slightly slower than fused Montgomery multiplication
|
||||
when spareBits >= 1:
|
||||
montMul_CIOS_nocarry_asm_adx_bmi2(r, a, a, M, m0ninv)
|
||||
else:
|
||||
montSquare_CIOS_asm_adx_bmi2(r, a, M, m0ninv, spareBits >= 1)
|
||||
else:
|
||||
montRed_asm(r, a, M, m0ninv, spareBits)
|
||||
elif UseASM_X86_32 and r.len <= 6:
|
||||
# TODO: Assembly faster than GCC but slower than Clang
|
||||
montRed_asm(r, a, M, m0ninv, spareBits)
|
||||
montSquare_CIOS_asm(r, a, M, m0ninv, spareBits >= 1)
|
||||
else:
|
||||
montyRedc2x_CIOS(r, a, M, m0ninv)
|
||||
# montyRedc2x_Comba(r, a, M, m0ninv)
|
||||
var r2x {.noInit.}: Limbs[2*N]
|
||||
r2x.square(a)
|
||||
r.montyRedc2x(r2x, M, m0ninv, spareBits)
|
||||
|
||||
func redc*(r: var Limbs, a, one, M: Limbs,
|
||||
m0ninv: static BaseType, spareBits: static int) =
|
||||
|
|
|
@ -125,7 +125,7 @@ macro debugConsts(): untyped {.used.} =
|
|||
for i in 1 ..< E.len:
|
||||
let curve = E[i]
|
||||
let curveName = $curve
|
||||
let modulus = bindSym(curveName & "_Fp_Modulus")
|
||||
let modulus = bindSym(curveName & "_Modulus")
|
||||
let r2modp = bindSym(curveName & "_Fp_R2modP")
|
||||
let negInvModWord = bindSym(curveName & "_Fp_NegInvModWord")
|
||||
|
||||
|
|
|
@ -42,9 +42,24 @@ type
|
|||
# Clobbered register
|
||||
ClobberedReg
|
||||
|
||||
Register* = enum
|
||||
rbx, rdx, r8, rax, xmm0
|
||||
when sizeof(int) == 8 and not defined(Constantine32):
|
||||
type
|
||||
Register* = enum
|
||||
rbx
|
||||
rdx
|
||||
r8
|
||||
rax
|
||||
xmm0
|
||||
else:
|
||||
type
|
||||
Register* = enum
|
||||
rbx = "ebx"
|
||||
rdx = "edx"
|
||||
r8 = "r8d"
|
||||
rax = "eax"
|
||||
xmm0
|
||||
|
||||
type
|
||||
Constraint* = enum
|
||||
## GCC extended assembly modifier
|
||||
Input = ""
|
||||
|
@ -117,6 +132,9 @@ func len*(opArray: Operand): int =
|
|||
func rotateLeft*(opArray: var OperandArray) =
|
||||
opArray.buf.rotateLeft(1)
|
||||
|
||||
func rotateRight*(opArray: var OperandArray) =
|
||||
opArray.buf.rotateLeft(-1)
|
||||
|
||||
proc `[]`*(opArray: OperandArray, index: int): Operand =
|
||||
opArray.buf[index]
|
||||
|
||||
|
@ -941,7 +959,7 @@ func mulx*(a: var Assembler_x86, dHi, dLo: Register, src0: Operand, src1: Regist
|
|||
a.regClobbers.incl dHi
|
||||
a.regClobbers.incl dLo
|
||||
|
||||
func adcx*(a: var Assembler_x86, dst: Operand|OperandReuse, src: Operand|OperandReuse|Register) =
|
||||
func adcx*(a: var Assembler_x86, dst: Operand|OperandReuse|Register, src: Operand|OperandReuse|Register) =
|
||||
## Does: dst <- dst + src + carry
|
||||
## and only sets the carry flag
|
||||
when dst is Operand:
|
||||
|
@ -950,7 +968,7 @@ func adcx*(a: var Assembler_x86, dst: Operand|OperandReuse, src: Operand|Operand
|
|||
a.codeFragment("adcx", src, dst)
|
||||
a.areFlagsClobbered = true
|
||||
|
||||
func adox*(a: var Assembler_x86, dst: Operand|OperandReuse, src: Operand|OperandReuse|Register) =
|
||||
func adox*(a: var Assembler_x86, dst: Operand|OperandReuse|Register, src: Operand|OperandReuse|Register) =
|
||||
## Does: dst <- dst + src + overflow
|
||||
## and only sets the overflow flag
|
||||
when dst is Operand:
|
||||
|
|
|
@ -109,7 +109,10 @@ template sqrTest(rng_gen: untyped): untyped =
|
|||
mulDbl.prod2x(a, a)
|
||||
sqrDbl.square2x(a)
|
||||
|
||||
doAssert bool(mulDbl == sqrDbl)
|
||||
doAssert bool(mulDbl == sqrDbl),
|
||||
"\nOriginal: " & a.mres.limbs.toString() &
|
||||
"\n Mul: " & mulDbl.limbs2x.toString() &
|
||||
"\n Sqr: " & sqrDbl.limbs2x.toString()
|
||||
|
||||
addsubnegTest(random_unsafe)
|
||||
addsubnegTest(randomHighHammingWeight)
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
-d:debugConstantine
|
|
@ -145,7 +145,6 @@ suite "Random Modular Squaring is consistent with Modular Multiplication" & " ["
|
|||
random_long01Seq(P224)
|
||||
|
||||
test "Random squaring mod P-256 [FastSquaring = " & $(Fp[P256].getSpareBits() >= 2) & "]":
|
||||
echo "Fp[P256].getSpareBits(): ", Fp[P256].getSpareBits()
|
||||
for _ in 0 ..< Iters:
|
||||
randomCurve(P256)
|
||||
for _ in 0 ..< Iters:
|
||||
|
@ -173,8 +172,9 @@ suite "Modular squaring - bugs highlighted by property-based testing":
|
|||
a.square()
|
||||
na.square()
|
||||
|
||||
check:
|
||||
bool(a == na)
|
||||
doAssert bool(a == na),
|
||||
"\n a² : " & a.mres.limbs.toString() &
|
||||
"\n (-a)²: " & na.mres.limbs.toString()
|
||||
|
||||
var a2{.noInit.}, na2{.noInit.}: Fp[Mersenne127]
|
||||
a2.fromHex"0x75bfffefbfffffff7fd9dfd800000000"
|
||||
|
@ -183,10 +183,13 @@ suite "Modular squaring - bugs highlighted by property-based testing":
|
|||
a2 *= a2
|
||||
na2 *= na2
|
||||
|
||||
check:
|
||||
bool(a2 == na2)
|
||||
bool(a2 == a)
|
||||
bool(a2 == na)
|
||||
doAssert(
|
||||
bool(a2 == na2) and
|
||||
bool(a2 == a) and
|
||||
bool(a2 == na),
|
||||
"\n a*a: " & a2.mres.limbs.toString() &
|
||||
"\n (-a)*(-a): " & na2.mres.limbs.toString()
|
||||
)
|
||||
|
||||
test "a² == (-a)² on for Fp[2^127 - 1] - #62":
|
||||
var a{.noInit.}: Fp[Mersenne127]
|
||||
|
@ -199,8 +202,9 @@ suite "Modular squaring - bugs highlighted by property-based testing":
|
|||
a.square()
|
||||
na.square()
|
||||
|
||||
check:
|
||||
bool(a == na)
|
||||
doAssert bool(a == na),
|
||||
"\n a² : " & a.mres.limbs.toString() &
|
||||
"\n (-a)²: " & na.mres.limbs.toString()
|
||||
|
||||
var a2{.noInit.}, na2{.noInit.}: Fp[Mersenne127]
|
||||
a2.fromHex"0x7ff7ffffffffffff1dfb7fafc0000000"
|
||||
|
@ -209,10 +213,13 @@ suite "Modular squaring - bugs highlighted by property-based testing":
|
|||
a2 *= a2
|
||||
na2 *= na2
|
||||
|
||||
check:
|
||||
bool(a2 == na2)
|
||||
bool(a2 == a)
|
||||
bool(a2 == na)
|
||||
doAssert(
|
||||
bool(a2 == na2) and
|
||||
bool(a2 == a) and
|
||||
bool(a2 == na),
|
||||
"\n a*a: " & a2.mres.limbs.toString() &
|
||||
"\n (-a)*(-a): " & na2.mres.limbs.toString()
|
||||
)
|
||||
|
||||
test "32-bit fast squaring on BLS12-381 - #42":
|
||||
# x = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)
|
||||
|
|
|
@ -1 +1,2 @@
|
|||
-d:testingCurves
|
||||
-d:debugConstantine
|
||||
|
|
Loading…
Reference in New Issue