Move inversions curve-specific routines to the curve folder

This commit is contained in:
Mamy André-Ratsimbazafy 2020-09-27 17:37:02 +02:00
parent 3f48a590e8
commit 8a456b84db
No known key found for this signature in database
GPG Key ID: 7B88AD1FE79492E1
5 changed files with 513 additions and 444 deletions

View File

@ -7,454 +7,15 @@
# at your option. This file may not be copied, modified, or distributed except according to those terms. # at your option. This file may not be copied, modified, or distributed except according to those terms.
import import
../config/[common, curves], ../config/[common, curves, type_fp],
./bigints, ./bigints,
./finite_fields ../curves/addchain_inversions
export addchain_inversions
# ############################################################ # ############################################################
# #
# Specialized inversions # Finite field inversion
#
# ############################################################
# Field-specific inversion routines
func square_repeated(r: var Fp, num: int) =
## Repeated squarings
for _ in 0 ..< num:
r.square()
# Secp256k1
# ------------------------------------------------------------
func inv_addchain(r: var Fp[Secp256k1], a: Fp[Secp256k1]) {.used.}=
## We invert via Little Fermat's theorem
## a^(-1) ≡ a^(p-2) (mod p)
## with p = "0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F"
## We take advantage of the prime special form to hardcode
## the sequence of squarings and multiplications for the modular exponentiation
##
## See libsecp256k1
##
## The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
## { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
## [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
var
x2{.noInit.}: Fp[Secp256k1]
x3{.noInit.}: Fp[Secp256k1]
x6{.noInit.}: Fp[Secp256k1]
x9{.noInit.}: Fp[Secp256k1]
x11{.noInit.}: Fp[Secp256k1]
x22{.noInit.}: Fp[Secp256k1]
x44{.noInit.}: Fp[Secp256k1]
x88{.noInit.}: Fp[Secp256k1]
x176{.noInit.}: Fp[Secp256k1]
x220{.noInit.}: Fp[Secp256k1]
x223{.noInit.}: Fp[Secp256k1]
x2.square(a)
x2 *= a
x3.square(x2)
x3 *= a
x6 = x3
x6.square_repeated(3)
x6 *= x3
x9 = x6
x9.square_repeated(3)
x9 *= x3
x11 = x9
x11.square_repeated(2)
x11 *= x2
x22 = x11
x22.square_repeated(11)
x22 *= x11
x44 = x22
x44.square_repeated(22)
x44 *= x22
x88 = x44
x88.square_repeated(44)
x88 *= x44
x176 = x88
x88.square_repeated(88)
x176 *= x88
x220 = x176
x220.square_repeated(44)
x220 *= x44
x223 = x220
x223.square_repeated(3)
x223 *= x3
# The final result is then assembled using a sliding window over the blocks
r = x223
r.square_repeated(23)
r *= x22
r.square_repeated(5)
r *= a
r.square_repeated(3)
r *= x2
r.square_repeated(2)
r *= a
# BLS12-381
# ------------------------------------------------------------
func inv_addchain*(r: var Fp[BLS12_381], a: Fp[BLS12_381]) =
var
x10 {.noinit.}: Fp[BLS12_381]
x100 {.noinit.}: Fp[BLS12_381]
x1000 {.noinit.}: Fp[BLS12_381]
x1001 {.noinit.}: Fp[BLS12_381]
x1011 {.noinit.}: Fp[BLS12_381]
x1101 {.noinit.}: Fp[BLS12_381]
x10001 {.noinit.}: Fp[BLS12_381]
x10100 {.noinit.}: Fp[BLS12_381]
x11001 {.noinit.}: Fp[BLS12_381]
x11010 {.noinit.}: Fp[BLS12_381]
x110100 {.noinit.}: Fp[BLS12_381]
x110110 {.noinit.}: Fp[BLS12_381]
x110111 {.noinit.}: Fp[BLS12_381]
x1001101 {.noinit.}: Fp[BLS12_381]
x1001111 {.noinit.}: Fp[BLS12_381]
x1010101 {.noinit.}: Fp[BLS12_381]
x1011101 {.noinit.}: Fp[BLS12_381]
x1100111 {.noinit.}: Fp[BLS12_381]
x1101001 {.noinit.}: Fp[BLS12_381]
x1110111 {.noinit.}: Fp[BLS12_381]
x1111011 {.noinit.}: Fp[BLS12_381]
x10001001 {.noinit.}: Fp[BLS12_381]
x10010101 {.noinit.}: Fp[BLS12_381]
x10010111 {.noinit.}: Fp[BLS12_381]
x10101001 {.noinit.}: Fp[BLS12_381]
x10110001 {.noinit.}: Fp[BLS12_381]
x10111111 {.noinit.}: Fp[BLS12_381]
x11000011 {.noinit.}: Fp[BLS12_381]
x11010000 {.noinit.}: Fp[BLS12_381]
x11010111 {.noinit.}: Fp[BLS12_381]
x11100001 {.noinit.}: Fp[BLS12_381]
x11100101 {.noinit.}: Fp[BLS12_381]
x11101011 {.noinit.}: Fp[BLS12_381]
x11110101 {.noinit.}: Fp[BLS12_381]
x11111111 {.noinit.}: Fp[BLS12_381]
x10 .square(a)
x100 .square(x10)
x1000 .square(x100)
x1001 .prod(a, x1000)
x1011 .prod(x10, x1001)
x1101 .prod(x10, x1011)
x10001 .prod(x100, x1101)
x10100 .prod(x1001, x1011)
x11001 .prod(x1000, x10001)
x11010 .prod(a, x11001)
x110100 .square(x11010)
x110110 .prod(x10, x110100)
x110111 .prod(a, x110110)
x1001101 .prod(x11001, x110100)
x1001111 .prod(x10, x1001101)
x1010101 .prod(x1000, x1001101)
x1011101 .prod(x1000, x1010101)
x1100111 .prod(x11010, x1001101)
x1101001 .prod(x10, x1100111)
x1110111 .prod(x11010, x1011101)
x1111011 .prod(x100, x1110111)
x10001001 .prod(x110100, x1010101)
x10010101 .prod(x11010, x1111011)
x10010111 .prod(x10, x10010101)
x10101001 .prod(x10100, x10010101)
x10110001 .prod(x1000, x10101001)
x10111111 .prod(x110110, x10001001)
x11000011 .prod(x100, x10111111)
x11010000 .prod(x1101, x11000011)
x11010111 .prod(x10100, x11000011)
x11100001 .prod(x10001, x11010000)
x11100101 .prod(x100, x11100001)
x11101011 .prod(x10100, x11010111)
x11110101 .prod(x10100, x11100001)
x11111111 .prod(x10100, x11101011) # 35 operations
# TODO: we can accumulate in a partially reduced
# doubled-size `r` to avoid the final substractions.
# and only reduce at the end.
# This requires the number of op to be less than log2(p) == 381
# 35 + 22 = 57 operations
r.prod(x10111111, x11100001)
r.square_repeated(8)
r *= x10001
r.square_repeated(11)
r *= x11110101
# 57 + 28 = 85 operations
r.square_repeated(11)
r *= x11100101
r.square_repeated(8)
r *= x11111111
r.square_repeated(7)
# 88 + 22 = 107 operations
r *= x1001101
r.square_repeated(9)
r *= x1101001
r.square_repeated(10)
r *= x10110001
# 107+24 = 131 operations
r.square_repeated(7)
r *= x1011101
r.square_repeated(9)
r *= x1111011
r.square_repeated(6)
# 131+23 = 154 operations
r *= x11001
r.square_repeated(11)
r *= x1101001
r.square_repeated(9)
r *= x11101011
# 154+28 = 182 operations
r.square_repeated(10)
r *= x11010111
r.square_repeated(6)
r *= x11001
r.square_repeated(10)
# 182+23 = 205 operations
r *= x1110111
r.square_repeated(9)
r *= x10010111
r.square_repeated(11)
r *= x1001111
# 205+30 = 235 operations
r.square_repeated(10)
r *= x11100001
r.square_repeated(9)
r *= x10001001
r.square_repeated(9)
# 235+21 = 256 operations
r *= x10111111
r.square_repeated(8)
r *= x1100111
r.square_repeated(10)
r *= x11000011
# 256+28 = 284 operations
r.square_repeated(9)
r *= x10010101
r.square_repeated(12)
r *= x1111011
r.square_repeated(5)
# 284 + 21 = 305 operations
r *= x1011
r.square_repeated(11)
r *= x1111011
r.square_repeated(7)
r *= x1001
# 305+32 = 337 operations
r.square_repeated(13)
r *= x11110101
r.square_repeated(9)
r *= x10111111
r.square_repeated(8)
# 337+22 = 359 operations
r *= x11111111
r.square_repeated(8)
r *= x11101011
r.square_repeated(11)
r *= x10101001
# 359+24 = 383 operations
r.square_repeated(8)
r *= x11111111
r.square_repeated(8)
r *= x11111111
r.square_repeated(6)
# 383+22 = 405 operations
r *= x110111
r.square_repeated(10)
r *= x11111111
r.square_repeated(9)
r *= x11111111
# 405+26 = 431 operations
r.square_repeated(8)
r *= x11111111
r.square_repeated(8)
r *= x11111111
r.square_repeated(8)
# 431+19 = 450 operations
r *= x11111111
r.square_repeated(7)
r *= x1010101
r.square_repeated(9)
r *= x10101001
# Total 450 operations:
# - 74 multiplications
# - 376 squarings
# BN Curves
# ------------------------------------------------------------
func inv_addchain*(r: var Fp[BN254_Snarks], a: Fp[BN254_Snarks]) =
var
x10 {.noInit.}: Fp[BN254_Snarks]
x11 {.noInit.}: Fp[BN254_Snarks]
x101 {.noInit.}: Fp[BN254_Snarks]
x110 {.noInit.}: Fp[BN254_Snarks]
x1000 {.noInit.}: Fp[BN254_Snarks]
x1101 {.noInit.}: Fp[BN254_Snarks]
x10010 {.noInit.}: Fp[BN254_Snarks]
x10011 {.noInit.}: Fp[BN254_Snarks]
x10100 {.noInit.}: Fp[BN254_Snarks]
x10111 {.noInit.}: Fp[BN254_Snarks]
x11100 {.noInit.}: Fp[BN254_Snarks]
x100000 {.noInit.}: Fp[BN254_Snarks]
x100011 {.noInit.}: Fp[BN254_Snarks]
x101011 {.noInit.}: Fp[BN254_Snarks]
x101111 {.noInit.}: Fp[BN254_Snarks]
x1000001 {.noInit.}: Fp[BN254_Snarks]
x1010011 {.noInit.}: Fp[BN254_Snarks]
x1011011 {.noInit.}: Fp[BN254_Snarks]
x1100001 {.noInit.}: Fp[BN254_Snarks]
x1110101 {.noInit.}: Fp[BN254_Snarks]
x10010001 {.noInit.}: Fp[BN254_Snarks]
x10010101 {.noInit.}: Fp[BN254_Snarks]
x10110101 {.noInit.}: Fp[BN254_Snarks]
x10111011 {.noInit.}: Fp[BN254_Snarks]
x11000001 {.noInit.}: Fp[BN254_Snarks]
x11000011 {.noInit.}: Fp[BN254_Snarks]
x11010011 {.noInit.}: Fp[BN254_Snarks]
x11100001 {.noInit.}: Fp[BN254_Snarks]
x11100011 {.noInit.}: Fp[BN254_Snarks]
x11100111 {.noInit.}: Fp[BN254_Snarks]
x10 .square(a)
x11 .prod(x10, a)
x101 .prod(x10, x11)
x110 .prod(x101, a)
x1000 .prod(x10, x110)
x1101 .prod(x101, x1000)
x10010 .prod(x101, x1101)
x10011 .prod(x10010, a)
x10100 .prod(x10011, a)
x10111 .prod(x11, x10100)
x11100 .prod(x101, x10111)
x100000 .prod(x1101, x10011)
x100011 .prod(x11, x100000)
x101011 .prod(x1000, x100011)
x101111 .prod(x10011, x11100)
x1000001 .prod(x10010, x101111)
x1010011 .prod(x10010, x1000001)
x1011011 .prod(x1000, x1010011)
x1100001 .prod(x110, x1011011)
x1110101 .prod(x10100, x1100001)
x10010001 .prod(x11100, x1110101)
x10010101 .prod(x100000, x1110101)
x10110101 .prod(x100000, x10010101)
x10111011 .prod(x110, x10110101)
x11000001 .prod(x110, x10111011)
x11000011 .prod(x10, x11000001)
x11010011 .prod(x10010, x11000001)
x11100001 .prod(x100000, x11000001)
x11100011 .prod(x10, x11100001)
x11100111 .prod(x110, x11100001) # 30 operations
# 30 + 27 = 57 operations
r.square(x11000001)
r.square_repeated(7)
r *= x10010001
r.square_repeated(10)
r *= x11100111
r.square_repeated(7)
# 57 + 19 = 76 operations
r *= x10111
r.square_repeated(9)
r *= x10011
r.square_repeated(7)
r *= x1101
# 76 + 33 = 109 operations
r.square_repeated(14)
r *= x1010011
r.square_repeated(9)
r *= x11100001
r.square_repeated(8)
# 109 + 18 = 127 operations
r *= x1000001
r.square_repeated(10)
r *= x1011011
r.square_repeated(5)
r *= x1101
# 127 + 34 = 161 operations
r.square_repeated(8)
r *= x11
r.square_repeated(12)
r *= x101011
r.square_repeated(12)
# 161 + 25 = 186 operations
r *= x10111011
r.square_repeated(8)
r *= x101111
r.square_repeated(14)
r *= x10110101
# 186 + 28 = 214
r.square_repeated(9)
r *= x10010001
r.square_repeated(5)
r *= x1101
r.square_repeated(12)
# 214 + 22 = 236
r *= x11100011
r.square_repeated(8)
r *= x10010101
r.square_repeated(11)
r *= x11010011
# 236 + 32 = 268
r.square_repeated(7)
r *= x1100001
r.square_repeated(11)
r *= x100011
r.square_repeated(12)
# 268 + 20 = 288
r *= x1011011
r.square_repeated(9)
r *= x11000011
r.square_repeated(8)
r *= x11100111
# 288 + 15 = 303
r.square_repeated(7)
r *= x1110101
r.square_repeated(6)
r *= x101
# ############################################################
#
# Dispatch
# #
# ############################################################ # ############################################################

View File

@ -0,0 +1,17 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
./bls12_381_inversion,
./bn254_snarks_inversion,
./secp256k1_inversion
export
bls12_381_inversion,
bn254_snarks_inversion,
secp256k1_inversion

View File

@ -0,0 +1,225 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
../config/curves,
../arithmetic/finite_fields
# ############################################################
#
# Specialized inversion for BLS12-381
#
# ############################################################
# Field-specific inversion routines
func square_repeated(r: var Fp, num: int) =
## Repeated squarings
for _ in 0 ..< num:
r.square()
func inv_addchain*(r: var Fp[BLS12_381], a: Fp[BLS12_381]) =
var
x10 {.noinit.}: Fp[BLS12_381]
x100 {.noinit.}: Fp[BLS12_381]
x1000 {.noinit.}: Fp[BLS12_381]
x1001 {.noinit.}: Fp[BLS12_381]
x1011 {.noinit.}: Fp[BLS12_381]
x1101 {.noinit.}: Fp[BLS12_381]
x10001 {.noinit.}: Fp[BLS12_381]
x10100 {.noinit.}: Fp[BLS12_381]
x11001 {.noinit.}: Fp[BLS12_381]
x11010 {.noinit.}: Fp[BLS12_381]
x110100 {.noinit.}: Fp[BLS12_381]
x110110 {.noinit.}: Fp[BLS12_381]
x110111 {.noinit.}: Fp[BLS12_381]
x1001101 {.noinit.}: Fp[BLS12_381]
x1001111 {.noinit.}: Fp[BLS12_381]
x1010101 {.noinit.}: Fp[BLS12_381]
x1011101 {.noinit.}: Fp[BLS12_381]
x1100111 {.noinit.}: Fp[BLS12_381]
x1101001 {.noinit.}: Fp[BLS12_381]
x1110111 {.noinit.}: Fp[BLS12_381]
x1111011 {.noinit.}: Fp[BLS12_381]
x10001001 {.noinit.}: Fp[BLS12_381]
x10010101 {.noinit.}: Fp[BLS12_381]
x10010111 {.noinit.}: Fp[BLS12_381]
x10101001 {.noinit.}: Fp[BLS12_381]
x10110001 {.noinit.}: Fp[BLS12_381]
x10111111 {.noinit.}: Fp[BLS12_381]
x11000011 {.noinit.}: Fp[BLS12_381]
x11010000 {.noinit.}: Fp[BLS12_381]
x11010111 {.noinit.}: Fp[BLS12_381]
x11100001 {.noinit.}: Fp[BLS12_381]
x11100101 {.noinit.}: Fp[BLS12_381]
x11101011 {.noinit.}: Fp[BLS12_381]
x11110101 {.noinit.}: Fp[BLS12_381]
x11111111 {.noinit.}: Fp[BLS12_381]
x10 .square(a)
x100 .square(x10)
x1000 .square(x100)
x1001 .prod(a, x1000)
x1011 .prod(x10, x1001)
x1101 .prod(x10, x1011)
x10001 .prod(x100, x1101)
x10100 .prod(x1001, x1011)
x11001 .prod(x1000, x10001)
x11010 .prod(a, x11001)
x110100 .square(x11010)
x110110 .prod(x10, x110100)
x110111 .prod(a, x110110)
x1001101 .prod(x11001, x110100)
x1001111 .prod(x10, x1001101)
x1010101 .prod(x1000, x1001101)
x1011101 .prod(x1000, x1010101)
x1100111 .prod(x11010, x1001101)
x1101001 .prod(x10, x1100111)
x1110111 .prod(x11010, x1011101)
x1111011 .prod(x100, x1110111)
x10001001 .prod(x110100, x1010101)
x10010101 .prod(x11010, x1111011)
x10010111 .prod(x10, x10010101)
x10101001 .prod(x10100, x10010101)
x10110001 .prod(x1000, x10101001)
x10111111 .prod(x110110, x10001001)
x11000011 .prod(x100, x10111111)
x11010000 .prod(x1101, x11000011)
x11010111 .prod(x10100, x11000011)
x11100001 .prod(x10001, x11010000)
x11100101 .prod(x100, x11100001)
x11101011 .prod(x10100, x11010111)
x11110101 .prod(x10100, x11100001)
x11111111 .prod(x10100, x11101011) # 35 operations
# TODO: we can accumulate in a partially reduced
# doubled-size `r` to avoid the final substractions.
# and only reduce at the end.
# This requires the number of op to be less than log2(p) == 381
# 35 + 22 = 57 operations
r.prod(x10111111, x11100001)
r.square_repeated(8)
r *= x10001
r.square_repeated(11)
r *= x11110101
# 57 + 28 = 85 operations
r.square_repeated(11)
r *= x11100101
r.square_repeated(8)
r *= x11111111
r.square_repeated(7)
# 88 + 22 = 107 operations
r *= x1001101
r.square_repeated(9)
r *= x1101001
r.square_repeated(10)
r *= x10110001
# 107+24 = 131 operations
r.square_repeated(7)
r *= x1011101
r.square_repeated(9)
r *= x1111011
r.square_repeated(6)
# 131+23 = 154 operations
r *= x11001
r.square_repeated(11)
r *= x1101001
r.square_repeated(9)
r *= x11101011
# 154+28 = 182 operations
r.square_repeated(10)
r *= x11010111
r.square_repeated(6)
r *= x11001
r.square_repeated(10)
# 182+23 = 205 operations
r *= x1110111
r.square_repeated(9)
r *= x10010111
r.square_repeated(11)
r *= x1001111
# 205+30 = 235 operations
r.square_repeated(10)
r *= x11100001
r.square_repeated(9)
r *= x10001001
r.square_repeated(9)
# 235+21 = 256 operations
r *= x10111111
r.square_repeated(8)
r *= x1100111
r.square_repeated(10)
r *= x11000011
# 256+28 = 284 operations
r.square_repeated(9)
r *= x10010101
r.square_repeated(12)
r *= x1111011
r.square_repeated(5)
# 284 + 21 = 305 operations
r *= x1011
r.square_repeated(11)
r *= x1111011
r.square_repeated(7)
r *= x1001
# 305+32 = 337 operations
r.square_repeated(13)
r *= x11110101
r.square_repeated(9)
r *= x10111111
r.square_repeated(8)
# 337+22 = 359 operations
r *= x11111111
r.square_repeated(8)
r *= x11101011
r.square_repeated(11)
r *= x10101001
# 359+24 = 383 operations
r.square_repeated(8)
r *= x11111111
r.square_repeated(8)
r *= x11111111
r.square_repeated(6)
# 383+22 = 405 operations
r *= x110111
r.square_repeated(10)
r *= x11111111
r.square_repeated(9)
r *= x11111111
# 405+26 = 431 operations
r.square_repeated(8)
r *= x11111111
r.square_repeated(8)
r *= x11111111
r.square_repeated(8)
# 431+19 = 450 operations
r *= x11111111
r.square_repeated(7)
r *= x1010101
r.square_repeated(9)
r *= x10101001
# Total 450 operations:
# - 74 multiplications
# - 376 squarings

View File

@ -0,0 +1,164 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
../config/curves,
../arithmetic/finite_fields
# ############################################################
#
# Specialized inversion for BN254-Snarks
#
# ############################################################
# Field-specific inversion routines
func square_repeated(r: var Fp, num: int) =
## Repeated squarings
for _ in 0 ..< num:
r.square()
func inv_addchain*(r: var Fp[BN254_Snarks], a: Fp[BN254_Snarks]) =
var
x10 {.noInit.}: Fp[BN254_Snarks]
x11 {.noInit.}: Fp[BN254_Snarks]
x101 {.noInit.}: Fp[BN254_Snarks]
x110 {.noInit.}: Fp[BN254_Snarks]
x1000 {.noInit.}: Fp[BN254_Snarks]
x1101 {.noInit.}: Fp[BN254_Snarks]
x10010 {.noInit.}: Fp[BN254_Snarks]
x10011 {.noInit.}: Fp[BN254_Snarks]
x10100 {.noInit.}: Fp[BN254_Snarks]
x10111 {.noInit.}: Fp[BN254_Snarks]
x11100 {.noInit.}: Fp[BN254_Snarks]
x100000 {.noInit.}: Fp[BN254_Snarks]
x100011 {.noInit.}: Fp[BN254_Snarks]
x101011 {.noInit.}: Fp[BN254_Snarks]
x101111 {.noInit.}: Fp[BN254_Snarks]
x1000001 {.noInit.}: Fp[BN254_Snarks]
x1010011 {.noInit.}: Fp[BN254_Snarks]
x1011011 {.noInit.}: Fp[BN254_Snarks]
x1100001 {.noInit.}: Fp[BN254_Snarks]
x1110101 {.noInit.}: Fp[BN254_Snarks]
x10010001 {.noInit.}: Fp[BN254_Snarks]
x10010101 {.noInit.}: Fp[BN254_Snarks]
x10110101 {.noInit.}: Fp[BN254_Snarks]
x10111011 {.noInit.}: Fp[BN254_Snarks]
x11000001 {.noInit.}: Fp[BN254_Snarks]
x11000011 {.noInit.}: Fp[BN254_Snarks]
x11010011 {.noInit.}: Fp[BN254_Snarks]
x11100001 {.noInit.}: Fp[BN254_Snarks]
x11100011 {.noInit.}: Fp[BN254_Snarks]
x11100111 {.noInit.}: Fp[BN254_Snarks]
x10 .square(a)
x11 .prod(x10, a)
x101 .prod(x10, x11)
x110 .prod(x101, a)
x1000 .prod(x10, x110)
x1101 .prod(x101, x1000)
x10010 .prod(x101, x1101)
x10011 .prod(x10010, a)
x10100 .prod(x10011, a)
x10111 .prod(x11, x10100)
x11100 .prod(x101, x10111)
x100000 .prod(x1101, x10011)
x100011 .prod(x11, x100000)
x101011 .prod(x1000, x100011)
x101111 .prod(x10011, x11100)
x1000001 .prod(x10010, x101111)
x1010011 .prod(x10010, x1000001)
x1011011 .prod(x1000, x1010011)
x1100001 .prod(x110, x1011011)
x1110101 .prod(x10100, x1100001)
x10010001 .prod(x11100, x1110101)
x10010101 .prod(x100000, x1110101)
x10110101 .prod(x100000, x10010101)
x10111011 .prod(x110, x10110101)
x11000001 .prod(x110, x10111011)
x11000011 .prod(x10, x11000001)
x11010011 .prod(x10010, x11000001)
x11100001 .prod(x100000, x11000001)
x11100011 .prod(x10, x11100001)
x11100111 .prod(x110, x11100001) # 30 operations
# 30 + 27 = 57 operations
r.square(x11000001)
r.square_repeated(7)
r *= x10010001
r.square_repeated(10)
r *= x11100111
r.square_repeated(7)
# 57 + 19 = 76 operations
r *= x10111
r.square_repeated(9)
r *= x10011
r.square_repeated(7)
r *= x1101
# 76 + 33 = 109 operations
r.square_repeated(14)
r *= x1010011
r.square_repeated(9)
r *= x11100001
r.square_repeated(8)
# 109 + 18 = 127 operations
r *= x1000001
r.square_repeated(10)
r *= x1011011
r.square_repeated(5)
r *= x1101
# 127 + 34 = 161 operations
r.square_repeated(8)
r *= x11
r.square_repeated(12)
r *= x101011
r.square_repeated(12)
# 161 + 25 = 186 operations
r *= x10111011
r.square_repeated(8)
r *= x101111
r.square_repeated(14)
r *= x10110101
# 186 + 28 = 214
r.square_repeated(9)
r *= x10010001
r.square_repeated(5)
r *= x1101
r.square_repeated(12)
# 214 + 22 = 236
r *= x11100011
r.square_repeated(8)
r *= x10010101
r.square_repeated(11)
r *= x11010011
# 236 + 32 = 268
r.square_repeated(7)
r *= x1100001
r.square_repeated(11)
r *= x100011
r.square_repeated(12)
# 268 + 20 = 288
r *= x1011011
r.square_repeated(9)
r *= x11000011
r.square_repeated(8)
r *= x11100111
# 288 + 15 = 303
r.square_repeated(7)
r *= x1110101
r.square_repeated(6)
r *= x101

View File

@ -0,0 +1,102 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
../config/curves,
../arithmetic/finite_fields
# ############################################################
#
# Specialized inversion for Secp256k1
#
# ############################################################
# Field-specific inversion routines
func square_repeated(r: var Fp, num: int) =
## Repeated squarings
for _ in 0 ..< num:
r.square()
func inv_addchain*(r: var Fp[Secp256k1], a: Fp[Secp256k1]) {.used.}=
## We invert via Little Fermat's theorem
## a^(-1) ≡ a^(p-2) (mod p)
## with p = "0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F"
## We take advantage of the prime special form to hardcode
## the sequence of squarings and multiplications for the modular exponentiation
##
## See libsecp256k1
##
## The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
## { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
## [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
var
x2{.noInit.}: Fp[Secp256k1]
x3{.noInit.}: Fp[Secp256k1]
x6{.noInit.}: Fp[Secp256k1]
x9{.noInit.}: Fp[Secp256k1]
x11{.noInit.}: Fp[Secp256k1]
x22{.noInit.}: Fp[Secp256k1]
x44{.noInit.}: Fp[Secp256k1]
x88{.noInit.}: Fp[Secp256k1]
x176{.noInit.}: Fp[Secp256k1]
x220{.noInit.}: Fp[Secp256k1]
x223{.noInit.}: Fp[Secp256k1]
x2.square(a)
x2 *= a
x3.square(x2)
x3 *= a
x6 = x3
x6.square_repeated(3)
x6 *= x3
x9 = x6
x9.square_repeated(3)
x9 *= x3
x11 = x9
x11.square_repeated(2)
x11 *= x2
x22 = x11
x22.square_repeated(11)
x22 *= x11
x44 = x22
x44.square_repeated(22)
x44 *= x22
x88 = x44
x88.square_repeated(44)
x88 *= x44
x176 = x88
x88.square_repeated(88)
x176 *= x88
x220 = x176
x220.square_repeated(44)
x220 *= x44
x223 = x220
x223.square_repeated(3)
x223 *= x3
# The final result is then assembled using a sliding window over the blocks
r = x223
r.square_repeated(23)
r *= x22
r.square_repeated(5)
r *= a
r.square_repeated(3)
r *= x2
r.square_repeated(2)
r *= a