diff --git a/tests/prng.nim b/tests/prng.nim index 3b8c8f8..37c4967 100644 --- a/tests/prng.nim +++ b/tests/prng.nim @@ -84,14 +84,15 @@ func next(rng: var RngState): uint64 = func random[T](rng: var RngState, a: var T, C: static Curve) {.noInit.}= ## Recursively initialize a BigInt or Field element when T is BigInt: - var unreduced{.noInit.}: T + var reduced, unreduced{.noInit.}: T unreduced.setInternalBitLength() for i in 0 ..< unreduced.limbs.len: unreduced.limbs[i] = Word(rng.next()) # Note: a simple modulo will be biaised but it's simple and "fast" - a.reduce(unreduced, C.Mod.mres) + reduced.reduce(unreduced, C.Mod.mres) + a.montyResidue(reduced, C.Mod.mres, C.getR2modP(), C.getNegInvModWord()) else: for field in fields(a): diff --git a/tests/test_fp2.nim b/tests/test_fp2.nim index 8f314c1..44cbe20 100644 --- a/tests/test_fp2.nim +++ b/tests/test_fp2.nim @@ -106,49 +106,45 @@ suite "𝔽p2 = 𝔽p[𝑖] (irreducible polynomial x²+1)": test(BN254): r.prod(Zero, x) check: bool(r == Zero) - # test(BN254): - # r.prod(x, One) - # echo "r: ", r - # echo "x: ", x - # check: bool(r == x) - # test(BN254): - # r.prod(One, x) - # echo "r: ", r - # echo "x: ", x - # check: bool(r == x) + test(BN254): + r.prod(x, One) + check: bool(r == x) + test(BN254): + r.prod(One, x) + check: bool(r == x) test(BLS12_381): r.prod(x, Zero) check: bool(r == Zero) test(BLS12_381): r.prod(Zero, x) check: bool(r == Zero) - # test(BLS12_381): - # r.prod(x, One) - # check: bool(r == x) - # test(BLS12_381): - # r.prod(One, x) - # check: bool(r == x) + test(BLS12_381): + r.prod(x, One) + check: bool(r == x) + test(BLS12_381): + r.prod(One, x) + check: bool(r == x) test(P256): r.prod(x, Zero) check: bool(r == Zero) test(P256): r.prod(Zero, x) check: bool(r == Zero) - # test(P256): - # r.prod(x, One) - # check: bool(r == x) - # test(P256): - # r.prod(One, x) - # check: bool(r == x) + test(P256): + r.prod(x, One) + check: bool(r == x) + test(P256): + r.prod(One, x) + check: bool(r == x) test(Secp256k1): r.prod(x, Zero) check: bool(r == Zero) test(Secp256k1): r.prod(Zero, x) check: bool(r == Zero) - # test(Secp256k1): - # r.prod(x, One) - # check: bool(r == x) - # test(Secp256k1): - # r.prod(One, x) - # check: bool(r == x) + test(Secp256k1): + r.prod(x, One) + check: bool(r == x) + test(Secp256k1): + r.prod(One, x) + check: bool(r == x)