Fix multiplication in 𝔽p12

This commit is contained in:
Mamy André-Ratsimbazafy 2020-04-09 13:37:45 +02:00
parent d081fca612
commit 3a2b35ba26
No known key found for this signature in database
GPG Key ID: 7B88AD1FE79492E1
3 changed files with 185 additions and 3 deletions

View File

@ -109,6 +109,8 @@ func square*(r: var Fp12, a: Fp12) =
func prod*[C](r: var Fp12[C], a, b: Fp12[C]) = func prod*[C](r: var Fp12[C], a, b: Fp12[C]) =
## Returns r = a * b ## Returns r = a * b
# r0 = a0 b0 + γ a1 b1
# r1 = (a0 + a1) (b0 + b1) - a0 b0 - a1 b1 (Karatsuba)
var t {.noInit.}: Fp6[C] var t {.noInit.}: Fp6[C]
# r1 <- (a0 + a1)(b0 + b1) # r1 <- (a0 + a1)(b0 + b1)
@ -116,7 +118,7 @@ func prod*[C](r: var Fp12[C], a, b: Fp12[C]) =
t.sum(b.c0, b.c1) t.sum(b.c0, b.c1)
r.c1.prod(r.c0, t) r.c1.prod(r.c0, t)
# r0 <- a0 b0 + γ a1 b1 # r0 <- a0 b0
# r1 <- (a0 + a1)(b0 + b1) - a0 b0 - a1 b1 # r1 <- (a0 + a1)(b0 + b1) - a0 b0 - a1 b1
r.c0.prod(a.c0, b.c0) r.c0.prod(a.c0, b.c0)
t.prod(a.c1, b.c1) t.prod(a.c1, b.c1)
@ -124,4 +126,4 @@ func prod*[C](r: var Fp12[C], a, b: Fp12[C]) =
r.c1 -= t r.c1 -= t
# r0 <- a0 b0 + γ a1 b1 # r0 <- a0 b0 + γ a1 b1
r.c0 -= Gamma * t r.c0 += Gamma * t

View File

@ -169,3 +169,183 @@ suite "𝔽p12 = 𝔽p6[√∛(1+𝑖)]":
test(FKM12_447) test(FKM12_447)
test(BLS12_461) test(BLS12_461)
test(BN462) test(BN462)
test "Multiplication by 0 and 1":
template test(C: static Curve, body: untyped) =
block:
proc testInstance() =
let Zero {.inject, used.} = block:
var Z{.noInit.}: Fp12[C]
Z.setZero()
Z
let One {.inject, used.} = block:
var O{.noInit.}: Fp12[C]
O.setOne()
O
for _ in 0 ..< Iters:
let x {.inject.} = rng.random(Fp12[C])
var r{.noinit, inject.}: Fp12[C]
body
testInstance()
test(BN254):
r.prod(x, Zero)
check: bool(r == Zero)
test(BN254):
r.prod(Zero, x)
check: bool(r == Zero)
test(BN254):
r.prod(x, One)
check: bool(r == x)
test(BN254):
r.prod(One, x)
check: bool(r == x)
test(BLS12_381):
r.prod(x, Zero)
check: bool(r == Zero)
test(BLS12_381):
r.prod(Zero, x)
check: bool(r == Zero)
test(BLS12_381):
r.prod(x, One)
check: bool(r == x)
test(BLS12_381):
r.prod(One, x)
check: bool(r == x)
test(BN462):
r.prod(x, Zero)
check: bool(r == Zero)
test(BN462):
r.prod(Zero, x)
check: bool(r == Zero)
test(BN462):
r.prod(x, One)
check: bool(r == x)
test(BN462):
r.prod(One, x)
check: bool(r == x)
test "Multiplication and Squaring are consistent":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let a = rng.random(Fp12[C])
var rMul{.noInit.}, rSqr{.noInit.}: Fp12[C]
rMul.prod(a, a)
rSqr.square(a)
check: bool(rMul == rSqr)
testInstance()
test(BN254)
test(BLS12_377)
test(BLS12_381)
test(BN446)
test(FKM12_447)
test(BLS12_461)
test(BN462)
test "𝔽p12 = 𝔽p6[√∛(1+𝑖)] addition is associative and commutative":
proc abelianGroup(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random(Fp12[curve])
let b = rng.random(Fp12[curve])
let c = rng.random(Fp12[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp12[curve]
# r0 = (a + b) + c
tmp1.sum(a, b)
tmp2.sum(tmp1, c)
let r0 = tmp2
# r1 = a + (b + c)
tmp1.sum(b, c)
tmp2.sum(a, tmp1)
let r1 = tmp2
# r2 = (a + c) + b
tmp1.sum(a, c)
tmp2.sum(tmp1, b)
let r2 = tmp2
# r3 = a + (c + b)
tmp1.sum(c, b)
tmp2.sum(a, tmp1)
let r3 = tmp2
# r4 = (c + a) + b
tmp1.sum(c, a)
tmp2.sum(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
abelianGroup(BN254)
abelianGroup(BLS12_377)
abelianGroup(BLS12_381)
abelianGroup(BN446)
abelianGroup(FKM12_447)
abelianGroup(BLS12_461)
abelianGroup(BN462)
test "𝔽p12 = 𝔽p6[√∛(1+𝑖)] multiplication is associative and commutative":
proc commutativeRing(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random(Fp12[curve])
let b = rng.random(Fp12[curve])
let c = rng.random(Fp12[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp12[curve]
# r0 = (a * b) * c
tmp1.prod(a, b)
tmp2.prod(tmp1, c)
let r0 = tmp2
# r1 = a * (b * c)
tmp1.prod(b, c)
tmp2.prod(a, tmp1)
let r1 = tmp2
# r2 = (a * c) * b
tmp1.prod(a, c)
tmp2.prod(tmp1, b)
let r2 = tmp2
# r3 = a * (c * b)
tmp1.prod(c, b)
tmp2.prod(a, tmp1)
let r3 = tmp2
# r4 = (c * a) * b
tmp1.prod(c, a)
tmp2.prod(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
commutativeRing(BN254)
commutativeRing(BLS12_377)
commutativeRing(BLS12_381)
commutativeRing(BN446)
commutativeRing(FKM12_447)
commutativeRing(BLS12_461)
commutativeRing(BN462)

View File

@ -231,7 +231,7 @@ suite "𝔽p6 = 𝔽p2[∛(1+𝑖)] (irreducible polynomial x³ - (1+𝑖))":
template test(C: static Curve) = template test(C: static Curve) =
block: block:
proc testInstance() = proc testInstance() =
for _ in 0 ..< 1: # Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp6[C]) let a = rng.random(Fp6[C])
var rMul{.noInit.}, rSqr{.noInit.}: Fp6[C] var rMul{.noInit.}, rSqr{.noInit.}: Fp6[C]