faster isSquare: faster hash_to_curve (BN254) and point deserialization (BLS12-377) closes #199

This commit is contained in:
Mamy Ratsimbazafy 2022-08-07 20:50:24 +02:00
parent 74a23244d2
commit 37354e9ca8
No known key found for this signature in database
GPG Key ID: 6227262F49BE273A
6 changed files with 280 additions and 79 deletions

View File

@ -79,10 +79,6 @@ func mapToCurve_svdw[F, G](
gx1.curve_eq_rhs(x1, G) gx1.curve_eq_rhs(x1, G)
gx2.curve_eq_rhs(x2, G) gx2.curve_eq_rhs(x2, G)
# TODO: faster Legendre symbol.
# We can optimize the 2 legendre symbols + 3 sqrt to
# - either 2 legendre and 1 sqrt
# - or 3 fused legendre+sqrt
let e1 = gx1.isSquare() let e1 = gx1.isSquare()
let e2 = gx2.isSquare() and not e1 let e2 = gx2.isSquare() and not e1

View File

@ -11,7 +11,7 @@ import
../config/type_bigint, ../config/type_bigint,
./limbs, ./limbs,
./limbs_extmul, ./limbs_extmul,
./limbs_invmod, ./limbs_exgcd,
./limbs_division ./limbs_division
export BigInt export BigInt

View File

@ -10,7 +10,7 @@ import
../../platforms/abstractions, ../../platforms/abstractions,
../config/curves, ../config/curves,
../curves/zoo_square_roots, ../curves/zoo_square_roots,
./bigints, ./finite_fields ./bigints, ./finite_fields, ./limbs_exgcd
# ############################################################ # ############################################################
# #
@ -142,34 +142,6 @@ func precompute_tonelli_shanks(a_pre_exp: var Fp, a: Fp) =
a_pre_exp = a a_pre_exp = a
a_pre_exp.powUnsafeExponent(Fp.C.tonelliShanks(exponent)) a_pre_exp.powUnsafeExponent(Fp.C.tonelliShanks(exponent))
func isSquare_tonelli_shanks(
a, a_pre_exp: Fp): SecretBool {.used.} =
## Returns if `a` is a quadratic residue
## This uses common precomputation for
## Tonelli-Shanks based square root and inverse square root
##
## a^((p-1-2^e)/(2*2^e))
##
## Note: if we need to compute a candidate square root anyway
## it's faster to square it to check if we get ``a``
const e = Fp.C.tonelliShanks(twoAdicity)
var r {.noInit.}: Fp
r.square(a_pre_exp) # a^(2(q-1-2^e)/(2*2^e)) = a^((q-1)/2^e - 1)
r *= a # a^((q-1)/2^e)
r.square_repeated(e-1) # a^((q-1)/2)
result = not(r.isMinusOne())
# r can be:
# - 1 if a square
# - 0 if 0
# - -1 if a quadratic non-residue
debug:
doAssert: bool(
r.isZero or
r.isOne or
r.isMinusOne()
)
func invsqrt_tonelli_shanks_pre( func invsqrt_tonelli_shanks_pre(
invsqrt: var Fp, invsqrt: var Fp,
a, a_pre_exp: Fp) = a, a_pre_exp: Fp) =
@ -314,33 +286,10 @@ func isSquare*(a: Fp): SecretBool =
## Returns true if ``a`` is a square (quadratic residue) in 𝔽p ## Returns true if ``a`` is a square (quadratic residue) in 𝔽p
## ##
## Assumes that the prime modulus ``p`` is public. ## Assumes that the prime modulus ``p`` is public.
when false: var aa {.noInit.}: matchingBigInt(Fp.C)
# Implementation: we use exponentiation by (p-1)/2 (Euler's criterion) aa.fromField(a)
# as it can reuse the exponentiation implementation let symbol = legendre(aa.limbs, Fp.fieldMod().limbs, aa.bits)
# Note that we don't care about leaking the bits of p return not(symbol == MaxWord)
# as we assume that
var xi {.noInit.} = a # TODO: is noInit necessary? see https://github.com/mratsim/constantine/issues/21
xi.powUnsafeExponent(Fp.getPrimeMinus1div2_BE())
result = not(xi.isMinusOne())
# xi can be:
# - 1 if a square
# - 0 if 0
# - -1 if a quadratic non-residue
debug:
doAssert: bool(
xi.isZero or
xi.isOne or
xi.isMinusOne()
)
else:
# We reuse the optimized addition chains instead of exponentiation by (p-1)/2
when Fp.C.has_P_3mod4_primeModulus() or Fp.C.has_P_5mod8_primeModulus():
var sqrt{.noInit.}, invsqrt{.noInit.}: Fp
return sqrt_invsqrt_if_square(sqrt, invsqrt, a)
else:
var a_pre_exp{.noInit.}: Fp
a_pre_exp.precompute_tonelli_shanks(a)
return isSquare_tonelli_shanks(a, a_pre_exp)
{.pop.} # inline {.pop.} # inline

View File

@ -13,6 +13,28 @@ import
# No exceptions allowed # No exceptions allowed
{.push raises: [].} {.push raises: [].}
# ############################################################
#
# Primitives based on Bézout's identity
#
# ############################################################
#
# Bézout's identity is the linear Diophantine equation
# au + bv = c
#
# The solution c is gcd(a, b)
# if a and b are coprime, gcd(a, b) = 1
# au + bv = 1
#
# Hence modulo b we have
# au + bv ≡ 1 (mod b)
# au ≡ 1 (mod b)
# So u is the modular multiplicative inverse of a (mod b)
#
# As we can use the Extended Euclidean Algorithm to find
# the GCD and the Bézout coefficient, we can use it to find the
# modular multiplicaative inverse.
# ############################################################ # ############################################################
# #
# Modular inversion (mod 2ᵏ) # Modular inversion (mod 2ᵏ)
@ -175,15 +197,15 @@ proc partitionDivsteps(bits, wordBitWidth: int): tuple[totalIters, numChunks, ch
func batchedDivsteps( func batchedDivsteps(
t: var TransitionMatrix, t: var TransitionMatrix,
theta: SignedSecretWord, hdelta: SignedSecretWord,
f0, g0: SignedSecretWord, f0, g0: SignedSecretWord,
numIters: int, numIters: int,
k: static int k: static int
): SignedSecretWord = ): SignedSecretWord =
## Bernstein-Yang half-delta (theta) batch of divsteps ## Bernstein-Yang half-delta (hdelta) batch of divsteps
## ##
## Output: ## Output:
## - return theta for the next batch of divsteps ## - return hdelta for the next batch of divsteps
## - mutate t, the transition matrix to apply `numIters` divsteps at once ## - mutate t, the transition matrix to apply `numIters` divsteps at once
## t is scaled by 2ᵏ ## t is scaled by 2ᵏ
## ##
@ -200,13 +222,13 @@ func batchedDivsteps(
f = f0 f = f0
g = g0 g = g0
theta = theta hdelta = hdelta
for i in k-numIters ..< k: for i in k-numIters ..< k:
debug: debug:
func reportLoop() = func reportLoop() =
debugEcho " iterations: [", k-numIters, ", ", k, ")", " (", numIters, " iterations in total)" debugEcho " iterations: [", k-numIters, ", ", k, ")", " (", numIters, " iterations in total)"
debugEcho " i: ", i, ", theta: ", int(theta) debugEcho " i: ", i, ", hdelta: ", int(hdelta)
# debugEcho " f: 0b", BiggestInt(f).toBin(64), ", g: 0b", BiggestInt(g).toBin(64), " | f: ", int(f), ", g: ", int(g) # debugEcho " f: 0b", BiggestInt(f).toBin(64), ", g: 0b", BiggestInt(g).toBin(64), " | f: ", int(f), ", g: ", int(g)
# debugEcho " u: 0b", BiggestInt(u).toBin(64), ", v: 0b", BiggestInt(v).toBin(64), " | u: ", int(u), ", v: ", int(v) # debugEcho " u: 0b", BiggestInt(u).toBin(64), ", v: 0b", BiggestInt(v).toBin(64), " | u: ", int(u), ", v: ", int(v)
# debugEcho " q: 0b", BiggestInt(q).toBin(64), ", r: 0b", BiggestInt(r).toBin(64), " | q: ", int(q), ", r: ", int(r) # debugEcho " q: 0b", BiggestInt(q).toBin(64), ", r: 0b", BiggestInt(r).toBin(64), " | q: ", int(q), ", r: ", int(r)
@ -216,8 +238,8 @@ func batchedDivsteps(
doAssert bool(u.ashr(k-i)*f0 + v.ashr(k-i)*g0 == f.lshl(i)), (reportLoop(); "Applying the transition matrix to (f₀, g₀) returns current (f, g)") doAssert bool(u.ashr(k-i)*f0 + v.ashr(k-i)*g0 == f.lshl(i)), (reportLoop(); "Applying the transition matrix to (f₀, g₀) returns current (f, g)")
doAssert bool(q.ashr(k-i)*f0 + r.ashr(k-i)*g0 == g.lshl(i)), (reportLoop(); "Applying the transition matrix to (f₀, g₀) returns current (f, g)") doAssert bool(q.ashr(k-i)*f0 + r.ashr(k-i)*g0 == g.lshl(i)), (reportLoop(); "Applying the transition matrix to (f₀, g₀) returns current (f, g)")
# Conditional masks for (theta < 0) and g odd # Conditional masks for (hdelta < 0) and g odd
let c1 = theta.isNegMask() let c1 = hdelta.isNegMask()
let c2 = g.isOddMask() let c2 = g.isOddMask()
# x, y, z, conditional complement of f, u, v # x, y, z, conditional complement of f, u, v
let x = f xor c1 let x = f xor c1
@ -227,10 +249,10 @@ func batchedDivsteps(
g.csub(x, c2) g.csub(x, c2)
q.csub(y, c2) q.csub(y, c2)
r.csub(z, c2) r.csub(z, c2)
# c3 = (theta >= 0) and g odd # c3 = (hdelta >= 0) and g odd
let c3 = c2 and not c1 let c3 = c2 and not c1
# theta = -theta or theta+1 # hdelta = -hdelta or hdelta+1
theta = (theta xor c3) + SignedSecretWord(1) hdelta = (hdelta xor c3) + SignedSecretWord(1)
# Conditional rollback substraction # Conditional rollback substraction
f.cadd(g, c3) f.cadd(g, c3)
u.cadd(q, c3) u.cadd(q, c3)
@ -249,7 +271,7 @@ func batchedDivsteps(
doAssert bool(q*f0 + r*g0 == g.lshl(k)), "Applying the final matrix to (f₀, g₀) gives the final (f, g)" doAssert bool(q*f0 + r*g0 == g.lshl(k)), "Applying the final matrix to (f₀, g₀) gives the final (f, g)"
doAssert checkDeterminant(t, u, v, q, r, k, numIters) doAssert checkDeterminant(t, u, v, q, r, k, numIters)
return theta return hdelta
func matVecMul_shr_k_mod_M[N, E: static int]( func matVecMul_shr_k_mod_M[N, E: static int](
t: TransitionMatrix, t: TransitionMatrix,
@ -373,8 +395,8 @@ func invmodImpl[N, E](
## Modular inversion using Bernstein-Yang algorithm ## Modular inversion using Bernstein-Yang algorithm
## r ≡ F.a⁻¹ (mod M) ## r ≡ F.a⁻¹ (mod M)
# theta = delta-1/2, delta starts at 1/2 for the half-delta variant # hdelta = delta-1/2, delta starts at 1/2 for the half-delta variant
var theta = SignedSecretWord(0) var hdelta = SignedSecretWord(0)
var d{.noInit.}, e{.noInit.}: LimbsUnsaturated[N, E] var d{.noInit.}, e{.noInit.}: LimbsUnsaturated[N, E]
var f{.noInit.}, g{.noInit.}: LimbsUnsaturated[N, E] var f{.noInit.}, g{.noInit.}: LimbsUnsaturated[N, E]
@ -389,8 +411,8 @@ func invmodImpl[N, E](
for i in 0 ..< partition.numChunks: for i in 0 ..< partition.numChunks:
var t{.noInit.}: TransitionMatrix var t{.noInit.}: TransitionMatrix
let numIters = partition.chunkSize + int(i < partition.cutoff) let numIters = partition.chunkSize + int(i < partition.cutoff)
# Compute transition matrix and next theta # Compute transition matrix and next hdelta
theta = t.batchedDivsteps(theta, f[0], g[0], numIters, k) hdelta = t.batchedDivsteps(hdelta, f[0], g[0], numIters, k)
# Apply the transition matrix # Apply the transition matrix
# [u v] [d] # [u v] [d]
# [q r]/2ᵏ.[e] mod M # [q r]/2ᵏ.[e] mod M
@ -430,7 +452,7 @@ func invmod*(
r: var Limbs, a: Limbs, r: var Limbs, a: Limbs,
F, M: static Limbs, bits: static int) = F, M: static Limbs, bits: static int) =
## Compute the scaled modular inverse of ``a`` modulo M ## Compute the scaled modular inverse of ``a`` modulo M
## r ≡ F.a⁻¹ (mod M) ## r ≡ F.a⁻¹ (mod M) (compile-time factor and modulus overload)
## ##
## with F and M known at compile-time ## with F and M known at compile-time
## ##
@ -449,4 +471,203 @@ func invmod*(
var a2 {.noInit.}: LimbsUnsaturated[NumUnsatWords, Excess] var a2 {.noInit.}: LimbsUnsaturated[NumUnsatWords, Excess]
a2.fromPackedRepr(a) a2.fromPackedRepr(a)
a2.invmodImpl(factor, m2, m0invK, k, bits) a2.invmodImpl(factor, m2, m0invK, k, bits)
r.fromUnsatRepr(a2) r.fromUnsatRepr(a2)
# ############################################################
#
# Euler criterion, Legendre/Jacobi/Krönecker symbol
#
# ############################################################
#
# The Euler criterion, i.e. the quadratic residuosity test, for p an odd prime, is:
# a^((p-1)/2) ≡ 1 (mod p), iff a is a square
# ≡ -1 (mod p), iff a is quadratic non-residue
# ≡ 0 (mod p), iff a is 0
# derived from Fermat's Little Theorem
#
# The Legendre symbol is a function with p odd prime
# (a/p)ₗ ≡ 1 (mod p), iff a is a square
# ≡ -1 (mod p), iff a is quadratic non-residue
# ≡ 0 (mod p), iff a is 0
#
# The Jacobi symbol generalizes the Legendre symbol for any odd n:
# (a/n)ⱼ = ∏ᵢ (a/pᵢ)ₗ
# is the product of legendre symbol (a/pᵢ)ₗ with pᵢ the prime factors of n
#
# Those symbols can be computed either via exponentiation (Fermat's Little Theorem)
# or using slight modifications to the Extended Euclidean Algorithm for GCD.
#
# See
# - Algorithm II.7 in Blake, Seroussi, Smart: "Elliptic Curves in Cryptography"
# - Algorithm 5.9.2 in Bach and Shallit: "Algorithmic Number Theory"
# - Pornin: https://github.com/pornin/x25519-cm0/blob/75a53f2/src/x25519-cm0.S#L89-L155
func batchedDivstepsSymbol(
t: var TransitionMatrix,
hdelta: SignedSecretWord,
f0, g0: SignedSecretWord,
numIters: int,
k: static int
): tuple[hdelta, L: SignedSecretWord] =
## Bernstein-Yang half-delta (hdelta) batch of divsteps
## with Legendre symbol tracking
##
## Output:
## - return hdelta for the next batch of divsteps
## - Returns the intermediate Legendre symbol
## - mutate t, the transition matrix to apply `numIters` divsteps at once
## t is scaled by 2ᵏ
##
## Input:
## - f0, bottom limb of f
## - g0, bottom limb of g
## - numIters, number of iterations requested in this batch of divsteps
## - k, the maximum batch size, transition matrix is scaled by 2ᵏ
var
u = SignedSecretWord(1 shl (k-numIters))
v = SignedSecretWord(0)
q = SignedSecretWord(0)
r = SignedSecretWord(1 shl (k-numIters))
f = f0
g = g0
hdelta = hdelta
L = SignedSecretWord(0)
for i in k-numIters ..< k:
debug:
func reportLoop() =
debugEcho " iterations: [", k-numIters, ", ", k, ")", " (", numIters, " iterations in total)"
debugEcho " i: ", i, ", hdelta: ", int(hdelta)
# debugEcho " f: 0b", BiggestInt(f).toBin(64), ", g: 0b", BiggestInt(g).toBin(64), " | f: ", int(f), ", g: ", int(g)
# debugEcho " u: 0b", BiggestInt(u).toBin(64), ", v: 0b", BiggestInt(v).toBin(64), " | u: ", int(u), ", v: ", int(v)
# debugEcho " q: 0b", BiggestInt(q).toBin(64), ", r: 0b", BiggestInt(r).toBin(64), " | q: ", int(q), ", r: ", int(r)
doAssert (BaseType(f) and 1) == 1, (reportLoop(); "f must be odd)")
doAssert bool(u*f0 + v*g0 == f.lshl(i)), (reportLoop(); "Applying the transition matrix to (f₀, g₀) returns current (f, g)")
doAssert bool(q*f0 + r*g0 == g.lshl(i)), (reportLoop(); "Applying the transition matrix to (f₀, g₀) returns current (f, g)")
let fi = f
# Conditional masks for (hdelta < 0) and g odd
let c1 = hdelta.isNegMask()
let c2 = g.isOddMask()
# x, y, z, conditional negated complement of f, u, v
let x = (f xor c1) - c1
let y = (u xor c1) - c1
let z = (v xor c1) - c1
# conditional addition g, q, r
g.cadd(x, c2)
q.cadd(y, c2)
r.cadd(z, c2)
# c3 = (hdelta < 0) and g odd
let c3 = c2 and c1
# hdelta = -hdelta-2 or hdelta-1
hdelta = (hdelta xor c3) - SignedSecretWord(1)
# Conditionally rollback
f.cadd(g, c3)
u.cadd(q, c3)
v.cadd(r, c3)
# Shifts
g = g.lshr(1)
u = u.lshl(1)
v = v.lshl(1)
L = L + (((fi and f) xor f.lshr(1)) and SignedSecretWord(2))
L = L + (L.isOdd() xor v.isNeg())
L = L and SignedSecretWord(3)
t.u = u
t.v = v
t.q = q
t.r = r
debug:
doAssert bool(u*f0 + v*g0 == f.lshl(k)), "Applying the final matrix to (f₀, g₀) gives the final (f, g)"
doAssert bool(q*f0 + r*g0 == g.lshl(k)), "Applying the final matrix to (f₀, g₀) gives the final (f, g)"
doAssert checkDeterminant(t, u, v, q, r, k, numIters)
return (hdelta, L)
func legendreImpl[N, E](
a: var LimbsUnsaturated[N, E],
M: LimbsUnsaturated[N, E],
k, bits: static int): SecretWord =
## Legendre symbol / Quadratic Residuosity Test
## using Bernstein-Yang algorithm
# hdelta = delta-1/2, delta starts at 1/2 for the half-delta variant
var hdelta = SignedSecretWord(0)
var f{.noInit.}, g{.noInit.}: LimbsUnsaturated[N, E]
# g < f for partitioning / iteration count formula
f = M
g = a
const partition = partitionDivsteps(bits, k)
const UnsatBitWidth = WordBitWidth - a.Excess
var # Track and accumulate Legendre symbol transitions
accL = SignedSecretWord(0)
L = SignedSecretWord(0)
for i in 0 ..< partition.numChunks:
var t{.noInit.}: TransitionMatrix
let numIters = partition.chunkSize + int(i < partition.cutoff)
# Compute transition matrix and next hdelta
when f.words.len > 1:
(hdelta, L) = t.batchedDivstepsSymbol(
hdelta,
# the symbol computation needs to see the extra 2 next bits.
f[0] or f[1].lshl(UnsatBitWidth),
g[0] or g[1].lshl(UnsatBitWidth),
numIters, k)
else:
(hdelta, L) = t.batchedDivstepsSymbol(hdelta, f[0], g[0], numIters, k)
# [u v] [f]
# [q r]/2ᵏ.[g]
t.matVecMul_shr_k(f, g, k)
accL = (accL + L) and SignedSecretWord(3)
accL = (accL + ((accL.isOdd() xor f.isNeg()))) and SignedSecretWord(3)
accL = (accL + accL.isOdd()) and SignedSecretWord(3)
accL = SignedSecretWord(1)-accL
accL.csetZero(f.isZeroMask()) # f = gcd = 1 as M is prime or f = 0 if a = 0
return SecretWord(accL)
func legendre*(a, M: Limbs, bits: static int): SecretWord =
## Compute the Legendre symbol
##
## (a/p)ₗ ≡ a^((p-1)/2) ≡ 1 (mod p), iff a is a square
## ≡ -1 (mod p), iff a is quadratic non-residue
## ≡ 0 (mod p), iff a is 0
const Excess = 2
const k = WordBitwidth - Excess
const NumUnsatWords = (bits + k - 1) div k
# Convert values to unsaturated repr
var m2 {.noInit.}: LimbsUnsaturated[NumUnsatWords, Excess]
m2.fromPackedRepr(M)
var a2 {.noInit.}: LimbsUnsaturated[NumUnsatWords, Excess]
a2.fromPackedRepr(a)
legendreImpl(a2, m2, k, bits)
func legendre*(a: Limbs, M: static Limbs, bits: static int): SecretWord =
## Compute the Legendre symbol (compile-time modulus overload)
##
## (a/p)ₗ ≡ a^((p-1)/2) ≡ 1 (mod p), iff a is a square
## ≡ -1 (mod p), iff a is quadratic non-residue
## ≡ 0 (mod p), iff a is 0
const Excess = 2
const k = WordBitwidth - Excess
const NumUnsatWords = (bits + k - 1) div k
# Convert values to unsaturated repr
const m2 = LimbsUnsaturated[NumUnsatWords, Excess].fromPackedRepr(M)
var a2 {.noInit.}: LimbsUnsaturated[NumUnsatWords, Excess]
a2.fromPackedRepr(a)
legendreImpl(a2, m2, k, bits)

View File

@ -269,6 +269,21 @@ template `==`*(x, y: SignedSecretWord): SecretBool =
# SignedSecretWord # SignedSecretWord
# ---------------- # ----------------
func isNeg*(a: SignedSecretWord): SignedSecretWord {.inline.} =
## Returns 1 if a is negative
## and 0 otherwise
a.lshr(WordBitWidth-1)
func isOdd*(a: SignedSecretWord): SignedSecretWord {.inline.} =
## Returns 1 if a is odd
## and 0 otherwise
a and SignedSecretWord(1)
func isZeroMask*(a: SignedSecretWord): SignedSecretWord {.inline.} =
## Produce the -1 mask if a is negative
## and 0 otherwise
not SignedSecretWord(a.SecretWord().isZero())
func isNegMask*(a: SignedSecretWord): SignedSecretWord {.inline.} = func isNegMask*(a: SignedSecretWord): SignedSecretWord {.inline.} =
## Produce the -1 mask if a is negative ## Produce the -1 mask if a is negative
## and 0 otherwise ## and 0 otherwise
@ -279,6 +294,12 @@ func isOddMask*(a: SignedSecretWord): SignedSecretWord {.inline.} =
## and 0 otherwise ## and 0 otherwise
-(a and SignedSecretWord(1)) -(a and SignedSecretWord(1))
func csetZero*(a: var SignedSecretWord, mask: SignedSecretWord) {.inline.} =
## Conditionally set `a` to 0
## mask must be 0 (0x00000...0000) (kept as is)
## or -1 (0xFFFF...FFFF) (zeroed)
a = a and mask
func cneg*( func cneg*(
a: SignedSecretWord, a: SignedSecretWord,
mask: SignedSecretWord): SignedSecretWord {.inline.} = mask: SignedSecretWord): SignedSecretWord {.inline.} =
@ -308,6 +329,20 @@ func csub*(
# UnsaturatedLimbs # UnsaturatedLimbs
# ---------------- # ----------------
func isZeroMask*(a: LimbsUnsaturated): SignedSecretWord {.inline.} =
## Produce the -1 mask if a is zero
## and 0 otherwise
var accum = SignedSecretWord(0)
for i in 0 ..< a.words.len:
accum = accum or a.words[i]
return accum.isZeroMask()
func isNeg*(a: LimbsUnsaturated): SignedSecretWord {.inline.} =
## Returns 1 if a is negative
## and 0 otherwise
a[a.words.len-1].lshr(WordBitWidth - a.Excess + 1)
func isNegMask*(a: LimbsUnsaturated): SignedSecretWord {.inline.} = func isNegMask*(a: LimbsUnsaturated): SignedSecretWord {.inline.} =
## Produce the -1 mask if a is negative ## Produce the -1 mask if a is negative
## and 0 otherwise ## and 0 otherwise

View File

@ -54,7 +54,7 @@ func sqrt_rotate_extension*(
## if there is one, update out_sqrt with it and return true ## if there is one, update out_sqrt with it and return true
## return false otherwise, out_sqrt is undefined in this case ## return false otherwise, out_sqrt is undefined in this case
## ##
## This avoids expensive trial "isSquare" checks (450+ field multiplications) ## This avoids expensive trial "isSquare" checks
## This requires the sqrt of sqrt of the quadratic non-residue ## This requires the sqrt of sqrt of the quadratic non-residue
## to be in Fp2 ## to be in Fp2
var coeff{.noInit.}, cand2{.noInit.}, t{.noInit.}: Fp2 var coeff{.noInit.}, cand2{.noInit.}, t{.noInit.}: Fp2