Add Fp2_complex tests

This commit is contained in:
Mamy André-Ratsimbazafy 2020-02-26 19:28:43 +01:00
parent df886aa3ca
commit 1f0ef23da7
No known key found for this signature in database
GPG Key ID: 7B88AD1FE79492E1
1 changed files with 96 additions and 2 deletions

View File

@ -16,7 +16,7 @@ import
# Test utilities # Test utilities
./prng ./prng
const Iters = 1 const Iters = 128
var rng: RngState var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32 let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
@ -93,7 +93,7 @@ suite "𝔽p2 = 𝔽p[𝑖] (irreducible polynomial x²+1)":
O.setOne() O.setOne()
O O
for i in 0 ..< Iters: for _ in 0 ..< Iters:
let x {.inject.} = rng.random(Fp2[C]) let x {.inject.} = rng.random(Fp2[C])
var r{.noinit, inject.}: Fp2[C] var r{.noinit, inject.}: Fp2[C]
body body
@ -148,3 +148,97 @@ suite "𝔽p2 = 𝔽p[𝑖] (irreducible polynomial x²+1)":
test(Secp256k1): test(Secp256k1):
r.prod(One, x) r.prod(One, x)
check: bool(r == x) check: bool(r == x)
test "𝔽p2 = 𝔽p[𝑖] addition is associative and commutative":
proc abelianGroup(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random(Fp2[curve])
let b = rng.random(Fp2[curve])
let c = rng.random(Fp2[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
# r0 = (a + b) + c
tmp1.sum(a, b)
tmp2.sum(tmp1, c)
let r0 = tmp2
# r1 = a + (b + c)
tmp1.sum(b, c)
tmp2.sum(a, tmp1)
let r1 = tmp2
# r2 = (a + c) + b
tmp1.sum(a, c)
tmp2.sum(tmp1, b)
let r2 = tmp2
# r3 = a + (c + b)
tmp1.sum(c, b)
tmp2.sum(a, tmp1)
let r3 = tmp2
# r4 = (c + a) + b
tmp1.sum(c, a)
tmp2.sum(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
abelianGroup(BN254)
abelianGroup(BLS12_381)
abelianGroup(Secp256k1)
abelianGroup(P256)
test "𝔽p2 = 𝔽p[𝑖] multiplication is associative and commutative":
proc commutativeRing(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random(Fp2[curve])
let b = rng.random(Fp2[curve])
let c = rng.random(Fp2[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
# r0 = (a * b) * c
tmp1.prod(a, b)
tmp2.prod(tmp1, c)
let r0 = tmp2
# r1 = a * (b * c)
tmp1.prod(b, c)
tmp2.prod(a, tmp1)
let r1 = tmp2
# r2 = (a * c) * b
tmp1.prod(a, c)
tmp2.prod(tmp1, b)
let r2 = tmp2
# r3 = a * (c * b)
tmp1.prod(c, b)
tmp2.prod(a, tmp1)
let r3 = tmp2
# r4 = (c * a) * b
tmp1.prod(c, a)
tmp2.prod(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
commutativeRing(BN254)
commutativeRing(BLS12_381)
commutativeRing(Secp256k1)
commutativeRing(P256)