Add sage script for BN and BLS12 curve families

This commit is contained in:
Mamy André-Ratsimbazafy 2020-03-21 15:50:39 +01:00
parent 12363020e1
commit 1282c38845
No known key found for this signature in database
GPG Key ID: 7B88AD1FE79492E1
6 changed files with 63 additions and 8 deletions

3
.gitignore vendored
View File

@ -9,3 +9,6 @@ build/
*.la *.la
*.exe *.exe
*.dll *.dll
# Sage
*.sage.py

View File

@ -63,6 +63,7 @@ declareCurves:
bitsize: 254 bitsize: 254
modulus: "0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47" modulus: "0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47"
# Equation: Y^2 = X^3 + 3 # Equation: Y^2 = X^3 + 3
# u: -(2^62 + 2^55 + 1)
curve Curve25519: # Bernstein curve curve Curve25519: # Bernstein curve
bitsize: 255 bitsize: 255
modulus: "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed" modulus: "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed"
@ -82,6 +83,7 @@ declareCurves:
bitsize: 381 bitsize: 381
modulus: "0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab" modulus: "0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab"
# Equation: y^2 = x^3 + 4 # Equation: y^2 = x^3 + 4
# u: -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)
curve BN446: curve BN446:
bitsize: 446 bitsize: 446
modulus: "0x2400000000000000002400000002d00000000d800000021c0000001800000000870000000b0400000057c00000015c000000132000000067" modulus: "0x2400000000000000002400000002d00000000d800000021c0000001800000000870000000b0400000057c00000015c000000132000000067"
@ -125,7 +127,7 @@ declareCurves:
# https://hal.archives-ouvertes.fr/hal-01534101/file/main.pdf # https://hal.archives-ouvertes.fr/hal-01534101/file/main.pdf
bitsize: 462 bitsize: 462
modulus: "0x240480360120023ffffffffff6ff0cf6b7d9bfca0000000000d812908f41c8020ffffffffff6ff66fc6ff687f640000000002401b00840138013" modulus: "0x240480360120023ffffffffff6ff0cf6b7d9bfca0000000000d812908f41c8020ffffffffff6ff66fc6ff687f640000000002401b00840138013"
# u = 2^114 + 2^101 2^14 1 # u = 2^114 + 2^101 - 2^14 - 1
# ############################################################ # ############################################################
# #

7
sage/README.md Normal file
View File

@ -0,0 +1,7 @@
# Sage scripts
This folder holds sage scripts:
- either for automating curve configuration
for example for computing the prime and order of BN or BLS curve families,
for irreducible polynomials for extension fields.
- for test vectors against a reference implementation.

View File

@ -0,0 +1,25 @@
def compute_curve_characteristic(u_str):
u = sage_eval(u_str)
p = (u - 1)^2 * (u^4 - u^2 + 1)//3 + u
r = u^4 - u^2 + 1
print(f'BLS12 family - {p.nbits()} bits')
print(' Prime modulus: 0x' + p.hex())
print(' Curve order: 0x' + r.hex())
print(' Parameter u: ' + u_str)
if u < 0:
print(' Parameter u (hex): -0x' + (-u).hex())
else:
print(' Parameter u (hex): 0x' + u.hex())
if __name__ == "__main__":
# Usage
# sage '-(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)'
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("curve_param",nargs="+")
args = parser.parse_args()
compute_curve_characteristic(args.curve_param[0])

25
sage/curve_family_bn.sage Normal file
View File

@ -0,0 +1,25 @@
def compute_curve_characteristic(u_str):
u = sage_eval(u_str)
p = 36*u^4 + 36*u^3 + 24*u^2 + 6*u + 1
r = 36*u^4 + 36*u^3 + 18*u^2 + 6*u + 1
print(f'BN family - {p.nbits()} bits')
print(' Prime modulus: 0x' + p.hex())
print(' Curve order: 0x' + r.hex())
print(' Parameter u: ' + u_str)
if u < 0:
print(' Parameter u (hex): -0x' + (-u).hex())
else:
print(' Parameter u (hex): 0x' + u.hex())
if __name__ == "__main__":
# Usage
# sage sage/curve_family_bn.sage '-(2^62 + 2^55 + 1)'
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("curve_param",nargs="+")
args = parser.parse_args()
compute_curve_characteristic(args.curve_param[0])

View File

@ -1,7 +0,0 @@
# Test vectors generators
Generators for complex tests.
The generators can be written in any language
and should be from industrial grade libraries (GMP, OpenSSL, ...)
or cryptography standards (IETF specs, ...)