Rename the test PRNG to unsafe and prepare random number generation for integer ranges to not depend on the stdlib and have a single unified seed.

This commit is contained in:
Mamy André-Ratsimbazafy 2020-04-14 20:02:21 +02:00 committed by Mamy Ratsimbazafy
parent d61680e1ad
commit 0115d3fd8e
8 changed files with 143 additions and 81 deletions

View File

@ -14,6 +14,7 @@ import
# ############################################################ # ############################################################
# #
# Pseudo-Random Number Generator # Pseudo-Random Number Generator
# Unsafe: for testing and benchmarking purposes
# #
# ############################################################ # ############################################################
# #
@ -29,6 +30,8 @@ import
# We use 2^512 to cover the range the base field elements # We use 2^512 to cover the range the base field elements
type RngState* = object type RngState* = object
## This is the state of a Xoshiro512** PRNG
## Unsafe: for testing and benchmarking purposes only
s: array[8, uint64] s: array[8, uint64]
func splitMix64(state: var uint64): uint64 = func splitMix64(state: var uint64): uint64 =
@ -79,8 +82,9 @@ func next(rng: var RngState): uint64 =
# BigInts and Fields # BigInts and Fields
# ------------------------------------------------------------ # ------------------------------------------------------------
func random[T](rng: var RngState, a: var T, C: static Curve) {.noInit.}= func random_unsafe[T](rng: var RngState, a: var T, C: static Curve) {.noInit.}=
## Recursively initialize a BigInt or Field element ## Recursively initialize a BigInt or Field element
## Unsafe: for testing and benchmarking purposes only
when T is BigInt: when T is BigInt:
var reduced, unreduced{.noInit.}: T var reduced, unreduced{.noInit.}: T
@ -93,46 +97,104 @@ func random[T](rng: var RngState, a: var T, C: static Curve) {.noInit.}=
else: else:
for field in fields(a): for field in fields(a):
rng.random(field, C) rng.random_unsafe(field, C)
# Elliptic curves # Elliptic curves
# ------------------------------------------------------------ # ------------------------------------------------------------
func random[F](rng: var RngState, a: var ECP_SWei_Proj[F]) = func random_unsafe[F](rng: var RngState, a: var ECP_SWei_Proj[F]) =
## Initialize a random curve point with Z coordinate == 1 ## Initialize a random curve point with Z coordinate == 1
## Unsafe: for testing and benchmarking purposes only
var fieldElem {.noInit.}: F var fieldElem {.noInit.}: F
var success = CtFalse var success = CtFalse
while not bool(success): while not bool(success):
# Euler's criterion: there are (p-1)/2 squares in a field with modulus `p` # Euler's criterion: there are (p-1)/2 squares in a field with modulus `p`
# so we have a probability of ~0.5 to get a good point # so we have a probability of ~0.5 to get a good point
rng.random(fieldElem, F.C) rng.random_unsafe(fieldElem, F.C)
success = trySetFromCoordX(a, fieldElem) success = trySetFromCoordX(a, fieldElem)
func random_with_randZ[F](rng: var RngState, a: var ECP_SWei_Proj[F]) = func random_unsafe_with_randZ[F](rng: var RngState, a: var ECP_SWei_Proj[F]) =
## Initialize a random curve point with Z coordinate being random ## Initialize a random curve point with Z coordinate being random
## Unsafe: for testing and benchmarking purposes only
var Z{.noInit.}: F var Z{.noInit.}: F
rng.random(Z, F.C) # If Z is zero, X will be zero and that will be an infinity point rng.random_unsafe(Z, F.C) # If Z is zero, X will be zero and that will be an infinity point
var fieldElem {.noInit.}: F var fieldElem {.noInit.}: F
var success = CtFalse var success = CtFalse
while not bool(success): while not bool(success):
rng.random(fieldElem, F.C) rng.random_unsafe(fieldElem, F.C)
success = trySetFromCoordsXandZ(a, fieldElem, Z) success = trySetFromCoordsXandZ(a, fieldElem, Z)
# Integer ranges
# ------------------------------------------------------------
func random_unsafe(rng: var RngState, maxExclusive: uint32): uint32 =
## Generate a random integer in 0 ..< maxExclusive
## Uses an unbiaised generation method
## See Lemire's algorithm modified by Melissa O'Neill
## https://www.pcg-random.org/posts/bounded-rands.html
let max = maxExclusive
var x = uint32 rng.next()
var m = x.uint64 * max.uint64
var l = uint32 m
if l < max:
var t = not(max) + 1 # -max
if t >= max:
t -= max
if t >= max:
t = t mod max
while l < t:
x = uint32 rng.next()
m = x.uint64 * max.uint64
l = uint32 m
return uint32(m shr 32)
# Generic over any supported type # Generic over any supported type
# ------------------------------------------------------------ # ------------------------------------------------------------
func random*(rng: var RngState, T: typedesc): T = func random_unsafe*[T: SomeInteger](rng: var RngState, inclRange: Slice[T]): T =
## Create a random Field or Extension Field or Curve Element ## Return a random integer in the given range.
when T is ECP_SWei_Proj: ## The range bounds must fit in an int32.
rng.random(result) let maxExclusive = inclRange.b + 1 - inclRange.a
else: result = T(rng.random_unsafe(uint32 maxExclusive))
rng.random(result, T.C) result += inclRange.a
func random_with_randZ*(rng: var RngState, T: typedesc[ECP_SWei_Proj]): T = func random_unsafe*(rng: var RngState, T: typedesc): T =
## Create a random Field or Extension Field or Curve Element
## Unsafe: for testing and benchmarking purposes only
when T is ECP_SWei_Proj:
rng.random_unsafe(result)
else:
rng.random_unsafe(result, T.C)
func random_unsafe_with_randZ*(rng: var RngState, T: typedesc[ECP_SWei_Proj]): T =
## Create a random curve element with a random Z coordinate ## Create a random curve element with a random Z coordinate
rng.random_with_randZ(result) ## Unsafe: for testing and benchmarking purposes only
rng.random_unsafe_with_randZ(result)
# Sanity checks
# ------------------------------------------------------------
when isMainModule:
import std/[tables, times]
var rng: RngState
let timeSeed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(timeSeed)
echo "prng_sanity_checks xoshiro512** seed: ", timeSeed
proc test[T](s: Slice[T]) =
var c = initCountTable[int]()
for _ in 0 ..< 1_000_000:
c.inc(rng.random_unsafe(s))
echo "1'000'000 pseudo-random outputs from ", s.a, " to ", s.b, " (incl): ", c
test(0..1)
test(0..2)
test(1..52)
test(-10..10)

View File

@ -8,13 +8,13 @@
import import
# Standard library # Standard library
unittest, times, random, unittest, times,
# Internals # Internals
../constantine/config/[common, curves], ../constantine/config/[common, curves],
../constantine/arithmetic, ../constantine/arithmetic,
../constantine/elliptic/[ec_weierstrass_affine, ec_weierstrass_projective], ../constantine/elliptic/[ec_weierstrass_affine, ec_weierstrass_projective],
# Test utilities # Test utilities
../helpers/prng ../helpers/prng_unsafe
const Iters = 128 const Iters = 128
@ -40,9 +40,9 @@ suite "Elliptic curve in Short Weierstrass form y² = x³ + a x + b with project
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
var r{.noInit.}: ECP_SWei_Proj[F] var r{.noInit.}: ECP_SWei_Proj[F]
when randZ: when randZ:
let P = rng.random_with_randZ(ECP_SWei_Proj[F]) let P = rng.random_unsafe_with_randZ(ECP_SWei_Proj[F])
else: else:
let P = rng.random(ECP_SWei_Proj[F]) let P = rng.random_unsafe(ECP_SWei_Proj[F])
r.sum(P, inf) r.sum(P, inf)
check: bool(r == P) check: bool(r == P)
@ -58,9 +58,9 @@ suite "Elliptic curve in Short Weierstrass form y² = x³ + a x + b with project
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
var r{.noInit.}: ECP_SWei_Proj[F] var r{.noInit.}: ECP_SWei_Proj[F]
when randZ: when randZ:
let P = rng.random_with_randZ(ECP_SWei_Proj[F]) let P = rng.random_unsafe_with_randZ(ECP_SWei_Proj[F])
else: else:
let P = rng.random(ECP_SWei_Proj[F]) let P = rng.random_unsafe(ECP_SWei_Proj[F])
var Q = P var Q = P
Q.neg() Q.neg()
@ -78,11 +78,11 @@ suite "Elliptic curve in Short Weierstrass form y² = x³ + a x + b with project
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
var r0{.noInit.}, r1{.noInit.}: ECP_SWei_Proj[F] var r0{.noInit.}, r1{.noInit.}: ECP_SWei_Proj[F]
when randZ: when randZ:
let P = rng.random_with_randZ(ECP_SWei_Proj[F]) let P = rng.random_unsafe_with_randZ(ECP_SWei_Proj[F])
let Q = rng.random_with_randZ(ECP_SWei_Proj[F]) let Q = rng.random_unsafe_with_randZ(ECP_SWei_Proj[F])
else: else:
let P = rng.random(ECP_SWei_Proj[F]) let P = rng.random_unsafe(ECP_SWei_Proj[F])
let Q = rng.random(ECP_SWei_Proj[F]) let Q = rng.random_unsafe(ECP_SWei_Proj[F])
r0.sum(P, Q) r0.sum(P, Q)
r1.sum(Q, P) r1.sum(Q, P)
@ -95,13 +95,13 @@ suite "Elliptic curve in Short Weierstrass form y² = x³ + a x + b with project
proc test(F: typedesc, randZ: static bool) = proc test(F: typedesc, randZ: static bool) =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
when randZ: when randZ:
let a = rng.random_with_randZ(ECP_SWei_Proj[F]) let a = rng.random_unsafe_with_randZ(ECP_SWei_Proj[F])
let b = rng.random_with_randZ(ECP_SWei_Proj[F]) let b = rng.random_unsafe_with_randZ(ECP_SWei_Proj[F])
let c = rng.random_with_randZ(ECP_SWei_Proj[F]) let c = rng.random_unsafe_with_randZ(ECP_SWei_Proj[F])
else: else:
let a = rng.random(ECP_SWei_Proj[F]) let a = rng.random_unsafe(ECP_SWei_Proj[F])
let b = rng.random(ECP_SWei_Proj[F]) let b = rng.random_unsafe(ECP_SWei_Proj[F])
let c = rng.random(ECP_SWei_Proj[F]) let c = rng.random_unsafe(ECP_SWei_Proj[F])
var tmp1{.noInit.}, tmp2{.noInit.}: ECP_SWei_Proj[F] var tmp1{.noInit.}, tmp2{.noInit.}: ECP_SWei_Proj[F]

View File

@ -11,7 +11,7 @@ import std/unittest, std/times,
../constantine/io/[io_bigints, io_fields], ../constantine/io/[io_bigints, io_fields],
../constantine/config/[curves, common], ../constantine/config/[curves, common],
# Test utilities # Test utilities
../helpers/prng ../helpers/prng_unsafe
const Iters = 128 const Iters = 128
@ -102,7 +102,7 @@ proc mainSelectCases() =
mainSelectCases() mainSelectCases()
proc randomCurve(C: static Curve) = proc randomCurve(C: static Curve) =
let a = rng.random(Fp[C]) let a = rng.random_unsafe(Fp[C])
var r_mul, r_sqr: Fp[C] var r_mul, r_sqr: Fp[C]

View File

@ -10,7 +10,7 @@ import ../constantine/arithmetic,
../constantine/io/[io_bigints, io_fields], ../constantine/io/[io_bigints, io_fields],
../constantine/config/curves, ../constantine/config/curves,
# Test utilities # Test utilities
../helpers/prng, ../helpers/prng_unsafe,
# Standard library # Standard library
std/unittest, std/times std/unittest, std/times
@ -207,7 +207,7 @@ proc main() =
var aInv, r: Fp[curve] var aInv, r: Fp[curve]
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp[curve]) let a = rng.random_unsafe(Fp[curve])
aInv.inv(a) aInv.inv(a)
r.prod(a, aInv) r.prod(a, aInv)
check: bool r.isOne() check: bool r.isOne()

View File

@ -10,7 +10,7 @@ import ../constantine/[arithmetic, primitives],
../constantine/io/[io_fields], ../constantine/io/[io_fields],
../constantine/config/[curves, common], ../constantine/config/[curves, common],
# Test utilities # Test utilities
../helpers/prng, ../helpers/prng_unsafe,
# Standard library # Standard library
std/tables, std/tables,
std/unittest, std/times std/unittest, std/times
@ -82,7 +82,7 @@ proc exhaustiveCheck_p3mod4(C: static Curve, modulus: static int) =
proc randomSqrtCheck_p3mod4(C: static Curve) = proc randomSqrtCheck_p3mod4(C: static Curve) =
test "Random square root check for p ≡ 3 (mod 4) on " & $Curve(C): test "Random square root check for p ≡ 3 (mod 4) on " & $Curve(C):
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp[C]) let a = rng.random_unsafe(Fp[C])
var na{.noInit.}: Fp[C] var na{.noInit.}: Fp[C]
na.neg(a) na.neg(a)

View File

@ -14,7 +14,7 @@ import
../constantine/config/[common, curves], ../constantine/config/[common, curves],
../constantine/arithmetic, ../constantine/arithmetic,
# Test utilities # Test utilities
../helpers/prng ../helpers/prng_unsafe
const Iters = 128 const Iters = 128
@ -50,12 +50,12 @@ suite "𝔽p12 = 𝔽p6[w] (irreducible polynomial w² - γ)":
var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp12[C] var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp12[C]
One.setOne() One.setOne()
a = rng.random(Fp12[C]) a = rng.random_unsafe(Fp12[C])
a2 = a a2 = a
a2.double() a2.double()
na.neg(a) na.neg(a)
b = rng.random(Fp12[C]) b = rng.random_unsafe(Fp12[C])
b2.double(b) b2.double(b)
nb.neg(b) nb.neg(b)
@ -237,7 +237,7 @@ suite "𝔽p12 = 𝔽p6[w] (irreducible polynomial w² - γ)":
O O
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let x {.inject.} = rng.random(Fp12[C]) let x {.inject.} = rng.random_unsafe(Fp12[C])
var r{.noinit, inject.}: Fp12[C] var r{.noinit, inject.}: Fp12[C]
body body
@ -297,7 +297,7 @@ suite "𝔽p12 = 𝔽p6[w] (irreducible polynomial w² - γ)":
block: block:
proc testInstance() = proc testInstance() =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp12[C]) let a = rng.random_unsafe(Fp12[C])
var rMul{.noInit.}, rSqr{.noInit.}: Fp12[C] var rMul{.noInit.}, rSqr{.noInit.}: Fp12[C]
rMul.prod(a, a) rMul.prod(a, a)
@ -321,7 +321,7 @@ suite "𝔽p12 = 𝔽p6[w] (irreducible polynomial w² - γ)":
block: block:
proc testInstance() = proc testInstance() =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp12[C]) let a = rng.random_unsafe(Fp12[C])
var na{.noInit.}: Fp12[C] var na{.noInit.}: Fp12[C]
na.neg(a) na.neg(a)
@ -350,7 +350,7 @@ suite "𝔽p12 = 𝔽p6[w] (irreducible polynomial w² - γ)":
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let factor = rand(-30..30) let factor = rand(-30..30)
let a = rng.random(Fp12[C]) let a = rng.random_unsafe(Fp12[C])
if factor == 0: continue if factor == 0: continue
@ -390,9 +390,9 @@ suite "𝔽p12 = 𝔽p6[w] (irreducible polynomial w² - γ)":
test "Addition is associative and commutative": test "Addition is associative and commutative":
proc abelianGroup(curve: static Curve) = proc abelianGroup(curve: static Curve) =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp12[curve]) let a = rng.random_unsafe(Fp12[curve])
let b = rng.random(Fp12[curve]) let b = rng.random_unsafe(Fp12[curve])
let c = rng.random(Fp12[curve]) let c = rng.random_unsafe(Fp12[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp12[curve] var tmp1{.noInit.}, tmp2{.noInit.}: Fp12[curve]
@ -441,9 +441,9 @@ suite "𝔽p12 = 𝔽p6[w] (irreducible polynomial w² - γ)":
test "Multiplication is associative and commutative": test "Multiplication is associative and commutative":
proc commutativeRing(curve: static Curve) = proc commutativeRing(curve: static Curve) =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp12[curve]) let a = rng.random_unsafe(Fp12[curve])
let b = rng.random(Fp12[curve]) let b = rng.random_unsafe(Fp12[curve])
let c = rng.random(Fp12[curve]) let c = rng.random_unsafe(Fp12[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp12[curve] var tmp1{.noInit.}, tmp2{.noInit.}: Fp12[curve]
@ -502,7 +502,7 @@ suite "𝔽p12 = 𝔽p6[w] (irreducible polynomial w² - γ)":
var aInv, r{.noInit.}: Fp12[curve] var aInv, r{.noInit.}: Fp12[curve]
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp12[curve]) let a = rng.random_unsafe(Fp12[curve])
aInv.inv(a) aInv.inv(a)
r.prod(a, aInv) r.prod(a, aInv)

View File

@ -14,7 +14,7 @@ import
../constantine/config/[common, curves], ../constantine/config/[common, curves],
../constantine/arithmetic, ../constantine/arithmetic,
# Test utilities # Test utilities
../helpers/prng ../helpers/prng_unsafe
const Iters = 128 const Iters = 128
@ -74,12 +74,12 @@ suite "𝔽p2 = 𝔽p[µ] (irreducible polynomial x²+µ)":
var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp2[C] var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp2[C]
One.setOne() One.setOne()
a = rng.random(Fp2[C]) a = rng.random_unsafe(Fp2[C])
a2 = a a2 = a
a2.double() a2.double()
na.neg(a) na.neg(a)
b = rng.random(Fp2[C]) b = rng.random_unsafe(Fp2[C])
b2.double(b) b2.double(b)
nb.neg(b) nb.neg(b)
@ -146,7 +146,7 @@ suite "𝔽p2 = 𝔽p[µ] (irreducible polynomial x²+µ)":
O O
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let x {.inject.} = rng.random(Fp2[C]) let x {.inject.} = rng.random_unsafe(Fp2[C])
var r{.noinit, inject.}: Fp2[C] var r{.noinit, inject.}: Fp2[C]
body body
@ -194,7 +194,7 @@ suite "𝔽p2 = 𝔽p[µ] (irreducible polynomial x²+µ)":
block: block:
proc testInstance() = proc testInstance() =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp2[C]) let a = rng.random_unsafe(Fp2[C])
var rMul{.noInit.}, rSqr{.noInit.}: Fp2[C] var rMul{.noInit.}, rSqr{.noInit.}: Fp2[C]
rMul.prod(a, a) rMul.prod(a, a)
@ -218,7 +218,7 @@ suite "𝔽p2 = 𝔽p[µ] (irreducible polynomial x²+µ)":
block: block:
proc testInstance() = proc testInstance() =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp2[C]) let a = rng.random_unsafe(Fp2[C])
var na{.noInit.}: Fp2[C] var na{.noInit.}: Fp2[C]
na.neg(a) na.neg(a)
@ -247,7 +247,7 @@ suite "𝔽p2 = 𝔽p[µ] (irreducible polynomial x²+µ)":
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let factor = rand(-30..30) let factor = rand(-30..30)
let a = rng.random(Fp2[C]) let a = rng.random_unsafe(Fp2[C])
if factor == 0: continue if factor == 0: continue
@ -287,9 +287,9 @@ suite "𝔽p2 = 𝔽p[µ] (irreducible polynomial x²+µ)":
test "Addition is associative and commutative": test "Addition is associative and commutative":
proc abelianGroup(curve: static Curve) = proc abelianGroup(curve: static Curve) =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp2[curve]) let a = rng.random_unsafe(Fp2[curve])
let b = rng.random(Fp2[curve]) let b = rng.random_unsafe(Fp2[curve])
let c = rng.random(Fp2[curve]) let c = rng.random_unsafe(Fp2[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve] var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
@ -338,9 +338,9 @@ suite "𝔽p2 = 𝔽p[µ] (irreducible polynomial x²+µ)":
test "Multiplication is associative and commutative": test "Multiplication is associative and commutative":
proc commutativeRing(curve: static Curve) = proc commutativeRing(curve: static Curve) =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp2[curve]) let a = rng.random_unsafe(Fp2[curve])
let b = rng.random(Fp2[curve]) let b = rng.random_unsafe(Fp2[curve])
let c = rng.random(Fp2[curve]) let c = rng.random_unsafe(Fp2[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve] var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
@ -394,7 +394,7 @@ suite "𝔽p2 = 𝔽p[µ] (irreducible polynomial x²+µ)":
var aInv, r{.noInit.}: Fp2[curve] var aInv, r{.noInit.}: Fp2[curve]
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp2[curve]) let a = rng.random_unsafe(Fp2[curve])
aInv.inv(a) aInv.inv(a)
r.prod(a, aInv) r.prod(a, aInv)
check: bool(r == one) check: bool(r == one)

View File

@ -14,7 +14,7 @@ import
../constantine/config/[common, curves], ../constantine/config/[common, curves],
../constantine/arithmetic, ../constantine/arithmetic,
# Test utilities # Test utilities
../helpers/prng ../helpers/prng_unsafe
const Iters = 128 const Iters = 128
@ -50,12 +50,12 @@ suite "𝔽p6 = 𝔽p2[v] (irreducible polynomial v³ - ξ)":
var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp6[C] var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp6[C]
One.setOne() One.setOne()
a = rng.random(Fp6[C]) a = rng.random_unsafe(Fp6[C])
a2 = a a2 = a
a2.double() a2.double()
na.neg(a) na.neg(a)
b = rng.random(Fp6[C]) b = rng.random_unsafe(Fp6[C])
b2.double(b) b2.double(b)
nb.neg(b) nb.neg(b)
@ -237,7 +237,7 @@ suite "𝔽p6 = 𝔽p2[v] (irreducible polynomial v³ - ξ)":
O O
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let x {.inject.} = rng.random(Fp6[C]) let x {.inject.} = rng.random_unsafe(Fp6[C])
var r{.noinit, inject.}: Fp6[C] var r{.noinit, inject.}: Fp6[C]
body body
@ -297,7 +297,7 @@ suite "𝔽p6 = 𝔽p2[v] (irreducible polynomial v³ - ξ)":
block: block:
proc testInstance() = proc testInstance() =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp6[C]) let a = rng.random_unsafe(Fp6[C])
var rMul{.noInit.}, rSqr{.noInit.}: Fp6[C] var rMul{.noInit.}, rSqr{.noInit.}: Fp6[C]
rMul.prod(a, a) rMul.prod(a, a)
@ -321,7 +321,7 @@ suite "𝔽p6 = 𝔽p2[v] (irreducible polynomial v³ - ξ)":
block: block:
proc testInstance() = proc testInstance() =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp6[C]) let a = rng.random_unsafe(Fp6[C])
var na{.noInit.}: Fp6[C] var na{.noInit.}: Fp6[C]
na.neg(a) na.neg(a)
@ -350,7 +350,7 @@ suite "𝔽p6 = 𝔽p2[v] (irreducible polynomial v³ - ξ)":
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let factor = rand(-30..30) let factor = rand(-30..30)
let a = rng.random(Fp6[C]) let a = rng.random_unsafe(Fp6[C])
if factor == 0: continue if factor == 0: continue
@ -390,9 +390,9 @@ suite "𝔽p6 = 𝔽p2[v] (irreducible polynomial v³ - ξ)":
test "Addition is associative and commutative": test "Addition is associative and commutative":
proc abelianGroup(curve: static Curve) = proc abelianGroup(curve: static Curve) =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp6[curve]) let a = rng.random_unsafe(Fp6[curve])
let b = rng.random(Fp6[curve]) let b = rng.random_unsafe(Fp6[curve])
let c = rng.random(Fp6[curve]) let c = rng.random_unsafe(Fp6[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp6[curve] var tmp1{.noInit.}, tmp2{.noInit.}: Fp6[curve]
@ -441,9 +441,9 @@ suite "𝔽p6 = 𝔽p2[v] (irreducible polynomial v³ - ξ)":
test "Multiplication is associative and commutative": test "Multiplication is associative and commutative":
proc commutativeRing(curve: static Curve) = proc commutativeRing(curve: static Curve) =
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp6[curve]) let a = rng.random_unsafe(Fp6[curve])
let b = rng.random(Fp6[curve]) let b = rng.random_unsafe(Fp6[curve])
let c = rng.random(Fp6[curve]) let c = rng.random_unsafe(Fp6[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp6[curve] var tmp1{.noInit.}, tmp2{.noInit.}: Fp6[curve]
@ -502,7 +502,7 @@ suite "𝔽p6 = 𝔽p2[v] (irreducible polynomial v³ - ξ)":
var aInv, r{.noInit.}: Fp6[curve] var aInv, r{.noInit.}: Fp6[curve]
for _ in 0 ..< Iters: for _ in 0 ..< Iters:
let a = rng.random(Fp6[curve]) let a = rng.random_unsafe(Fp6[curve])
aInv.inv(a) aInv.inv(a)
r.prod(a, aInv) r.prod(a, aInv)