constantine/README.md

64 lines
2.9 KiB
Markdown
Raw Normal View History

2020-02-11 23:20:31 +00:00
# Constantine - Constant Time Elliptic Curve Cryptography
[![License: Apache](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
2018-07-24 14:52:18 +00:00
![Stability: experimental](https://img.shields.io/badge/stability-experimental-orange.svg)
2020-02-11 23:20:31 +00:00
This library provides constant-time implementation of elliptic curve cryptography.
2020-02-11 23:20:31 +00:00
> Warning ⚠️: The library is in development state and cannot be used at the moment
> except as a showcase or to start a discussion on modular big integers internals.
2018-07-24 14:52:18 +00:00
## Installation
You can install the developement version of the library through nimble with the following command
```
nimble install https://github.com/mratsim/constantine@#master
2018-07-24 14:52:18 +00:00
```
2020-02-11 23:20:31 +00:00
## Target audience
The library aims to be a portable, compact and hardened library for elliptic curve cryptography needs, in particular for blockchain protocols and zero-knowledge proofs system.
The library focuses on following properties:
- constant-time (not leaking secret data via side-channels)
- generated code size, datatype size and stack usage
- performance
in this order
## Security
Hardening an implementation against all existing and upcoming attack vectors is an extremely complex task.
The library is provided as is, without any guarantees at least until:
- it gets audited
- formal proofs of correctness are produced
- formal verification of constant-time implementation is possible
Defense against common attack vectors are provided on a best effort basis
attackers may go to great lengths to retrieve secret data including:
- Timing the time taken to multiply on an elliptic curve
- Analysing the power usage of embedded devices
- Detecting cache misses when using lookup tables
- Memory attacks like page-faults, allocators, memory retention attacks
This is would be incomplete without mentioning that the hardware, OS and compiler
actively hinder you by:
- Hardware: sometimes not implementing multiplication in constant-time.
- OS: not providing a way to prevent memory paging to disk, core dumps, a debugger attaching to your process or a context switch (coroutines) leaking register data.
- Compiler: optimizing away your carefully crafted branchless code and leaking server secrets or optimizing away your secure erasure routine which is "useless" because at the end of the function the data is not used anymore.
A growing number of attack vectors is being collected for your viewing pleasure
at https://github.com/mratsim/constantine/wiki/Constant-time-arithmetics
2018-07-24 14:52:18 +00:00
## License
2018-09-05 18:47:55 +00:00
Licensed and distributed under either of
* MIT license: [LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT
2019-01-02 14:09:55 +00:00
or
* Apache License, Version 2.0, ([LICENSE-APACHEv2](LICENSE-APACHEv2) or http://www.apache.org/licenses/LICENSE-2.0)
2018-07-24 14:52:18 +00:00
2019-01-02 14:09:55 +00:00
at your option. This file may not be copied, modified, or distributed except according to those terms.