constantine/sage/lattice_decomposition_bls12_381_g2.sage

416 lines
14 KiB
Python
Raw Normal View History

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# BLS12-381 GLS Endomorphism
# Lattice Decomposition
#
# ############################################################
# Parameters
x = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)
p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x
r = x^4 - x^2 + 1
t = x+1
print(' Prime modulus p: 0x' + p.hex())
print(' Curve order r: 0x' + r.hex())
print(' trace t: 0x' + t.hex())
# Finite fields
Fp = GF(p)
K2.<u> = PolynomialRing(Fp)
Fp2.<beta> = Fp.extension(u^2+1)
SNR = Fp2([1, 1]) # Sextic Non-Residue for Sextic Twist
# Curves
b = 4
G1 = EllipticCurve(Fp, [0, b])
G2 = EllipticCurve(Fp2, [0, b*SNR])
# https://crypto.stackexchange.com/questions/64064/order-of-twisted-curve-in-pairings
# https://math.stackexchange.com/questions/144194/how-to-find-the-order-of-elliptic-curve-over-finite-field-extension
cofactorG1 = G1.order() // r
cofactorG2 = G2.order() // r
print('')
print('cofactor G1: ' + cofactorG1.hex())
print('cofactor G2: ' + cofactorG2.hex())
print('')
# Frobenius constants (D type: use SNR, M type use 1/SNR)
FrobConst_psi = (1/SNR)^((p-1)/6)
FrobConst_psi_2 = FrobConst_psi * FrobConst_psi
FrobConst_psi_3 = FrobConst_psi_2 * FrobConst_psi
FrobConst_psi2_2 = FrobConst_psi_2 * FrobConst_psi_2^p
FrobConst_psi2_3 = FrobConst_psi_3 * FrobConst_psi_3^p
def psi(P):
(Px, Py, Pz) = P
return G2([
FrobConst_psi_2 * Px.frobenius(1),
FrobConst_psi_3 * Py.frobenius(1)
# Pz.frobenius() - Always 1 after extract
])
def psi2(P):
(Px, Py, Pz) = P
return G2([
FrobConst_psi2_2 * Px.frobenius(2),
FrobConst_psi2_3 * Py.frobenius(2)
# Pz - Always 1 after extract
])
def clearCofactorG2(P):
return cofactorG2 * P
# Test generator
set_random_seed(1337)
# Check
def checkEndo():
P = G2.random_point()
P = clearCofactorG2(P)
(Px, Py, Pz) = P
# Galbraith-Lin-Scott, 2008, Theorem 1
assert psi(psi(P)) - t*psi(P) + p*P == G2([0, 1, 0])
# Galbraith-Scott, 2008, Lemma 1
# k-th cyclotomic polynomial with k = 12
assert psi2(psi2(P)) - psi2(P) + P == G2([0, 1, 0])
assert p % r == (t-1) % r
# assert (p^4 - p^2 + 1) % r == 0
assert ((t-1)^4 - (t-1)^2 + 1) % r == 0
assert (t-1)*P == (p % r)*P
assert (t-1)*P == psi(P)
print('Endomorphism OK')
checkEndo()
def subgroup_check(P):
ppP = psi2(P)
assert x * psi(ppP) - ppP + P == G2([0,1,0])
# Decomposition generated by LLL-algorithm and Babai rounding
# to solve the Shortest (Basis) Vector Problem
#
# TODO: This lattice is generating wrong result
# Lattice from Guide to Pairing-Based Cryptography
# Lat = [
# [ x, 1, 0, 0],
# [ 0, x, 1, 0],
# [ 0, 0, x, 1],
# [ 1, 0,-1, x]
# ]
# ahat = [x*(x^2+1), -(x^2+1), x, -1]
# Lattice from my own LLL+Babai rounding routines
Lat = Matrix([
[-x, 1, 0, 0],
[ 0,-x, 1, 0],
[ 0, 0,-x, 1],
[ 1, 0,-1,-x]
])
# print('Lat: ' + str(Lat))
ahat = vector([r, 0, 0, 0]) * Lat.inverse()
# print('ahat: ' + str(ahat))
n = int(r).bit_length()
n = int(((n + 64 - 1) // 64) * 64) # round to next multiple of 64
v = [Integer(int(a) << n) // r for a in ahat]
def pretty_print_lattice(Lat):
latHex = [['0x' + x.hex() if x >= 0 else '-0x' + (-x).hex() for x in vec] for vec in Lat]
maxlen = max([len(cell) for row in latHex for cell in row])
for row in latHex:
row = ' '.join(cell.rjust(maxlen + 2) for cell in row)
print(row)
print('\nLattice')
pretty_print_lattice(Lat)
print('\nbasis:')
print(' 𝛼\u03050: 0x' + v[0].hex())
print(' 𝛼\u03051: 0x' + v[1].hex())
print(' 𝛼\u03052: 0x' + v[2].hex())
print(' 𝛼\u03053: 0x' + v[3].hex())
print('')
maxInfNorm = abs(x + 2)
print('\nmax infinity norm:')
print(' ||(a0 , a1 , a2 , a3)||∞ ≤ 0x' + str(maxInfNorm.hex()))
print(' infinity norm bitlength: ' + str(int(maxInfNorm).bit_length()))
# Contrary to Faz2013 paper, we use the max infinity norm
# to properly dimension our recoding instead of ⌈log2 r/m⌉ + 1
# which fails for some inputs
# +1 for signed column
# Optional +1 for handling negative miniscalars
L = int(maxInfNorm).bit_length() + 1
L += 1
lambda1 = (t-1) % r
lambda2 = lambda1^2 % r
lambda3 = lambda1^3 % r
def getGLV2_decomp(scalar):
maxLen = (int(r).bit_length() + 3) // 4 + 1
maxLen += 1 # Deal with negative miniscalars
a0 = (v[0] * scalar) >> n
a1 = (v[1] * scalar) >> n
a2 = (v[2] * scalar) >> n
a3 = (v[3] * scalar) >> n
k0 = scalar - a0 * Lat[0][0] - a1 * Lat[1][0] - a2 * Lat[2][0] - a3 * Lat[3][0]
k1 = 0 - a0 * Lat[0][1] - a1 * Lat[1][1] - a2 * Lat[2][1] - a3 * Lat[3][1]
k2 = 0 - a0 * Lat[0][2] - a1 * Lat[1][2] - a2 * Lat[2][2] - a3 * Lat[3][2]
k3 = 0 - a0 * Lat[0][3] - a1 * Lat[1][3] - a2 * Lat[2][3] - a3 * Lat[3][3]
print("k0.bitlength(): " + str(int(k0).bit_length()))
print("k1.bitlength(): " + str(int(k1).bit_length()))
print("k2.bitlength(): " + str(int(k2).bit_length()))
print("k3.bitlength(): " + str(int(k3).bit_length()))
print('k0: ' + k0.hex())
print('k1: ' + k1.hex())
print('k2: ' + k2.hex())
print('k3: ' + k3.hex())
assert scalar == (k0 + k1*lambda1 + k2*lambda2 + k3*lambda3) % r
assert int(k0).bit_length() <= maxLen
assert int(k1).bit_length() <= maxLen
assert int(k2).bit_length() <= maxLen
assert int(k3).bit_length() <= maxLen
return k0, k1, k2, k3
def recodeScalars(k):
m = 4
b = [[0] * L, [0] * L, [0] * L, [0] * L]
b[0][L-1] = 0
for i in range(0, L-1): # l-2 inclusive
b[0][i] = 1 - ((k[0] >> (i+1)) & 1)
for j in range(1, m):
for i in range(0, L):
b[j][i] = k[j] & 1
k[j] = k[j]//2 + (b[j][i] & b[0][i])
return b
def clearBit(v, bit):
return v & ~int(1 << bit)
def buildLut(P0, P_endos):
m = 4
assert len(P_endos) == m-1
lut = [0] * (1 << (m-1))
lut[0] = P0
lutS = [''] * (1 << (m-1))
lutS[0] = 'P0'
endoS = ['P1', 'P2', 'P3']
for u in range(1, 1 << (m-1)):
msb = u.bit_length() - 1
idx = clearBit(u, msb)
lut[u] = lut[clearBit(u, msb)] + P_endos[msb]
lutS[u] = lutS[clearBit(u, msb)] + ' + ' + endoS[msb]
print('LUT: ' + str(lutS))
return lut
def pointToString(P):
(Px, Py, Pz) = P
vPx = vector(Px)
vPy = vector(Py)
result = 'Point(\n'
result += ' Px: ' + Integer(vPx[0]).hex() + ' + β * ' + Integer(vPx[1]).hex() + '\n'
result += ' Py: ' + Integer(vPy[0]).hex() + ' + β * ' + Integer(vPy[1]).hex() + '\n'
result += ')'
return result
def getIndex(glvRecoding, bit):
m = 4
index = 0
for k in range(1, m):
index |= ((glvRecoding[k][bit] & 1) << (k-1))
return index
def updateFactors(factors, recoded, bit):
index = getIndex(recoded, bit)
if recoded[0][bit] == 0: # Positive
factors[0] += 1
factors[1] += (index >> 0) & 1
factors[2] += (index >> 1) & 1
factors[3] += (index >> 2) & 1
else:
factors[0] -= 1
factors[1] -= (index >> 0) & 1
factors[2] -= (index >> 1) & 1
factors[3] -= (index >> 2) & 1
def doubleFactors(factors):
for i in range(len(factors)):
factors[i] *= 2
def printFactors(factors):
print('Multiplication done: ')
for i in range(len(factors)):
print(f' f{i}: {factors[i].hex()}')
def scalarMulEndo(scalar, P0):
m = 4
print('r bits: ' + str(int(r).bit_length()))
print('L: ' + str(L))
print('scalar: ' + Integer(scalar).hex())
k0, k1, k2, k3 = getGLV2_decomp(scalar)
P1 = psi(P0)
P2 = psi2(P0)
P3 = psi(P2)
expected = scalar * P0
decomp = k0*P0 + k1*P1 + k2*P2 + k3*P3
print('expected: ' + pointToString(expected))
print('decomp: ' + pointToString(decomp))
assert expected == decomp
# Alternative to adding an extra bit
# to deal with miniscalars, unfortunately broken
# for some input
# for example 0x5668a2332db27199dcfb7cbdfca6317c2ff128db26d7df68483e0a095ec8e88f
# which is missing bits for b[2]
# if k0 < 0: k0 = -k0; P0 = -P0
# if k1 < 0: k1 = -k1; P1 = -P1
# if k2 < 0: k2 = -k2; P2 = -P2
# if k3 < 0: k3 = -k3; P3 = -P3
print('------ recode scalar -----------')
even = k0 & 1 == 0
print('was even: ' + str(even))
if even:
k0 += 1
b = recodeScalars([k0, k1, k2, k3])
print('b0: ' + str(list(reversed(b[0]))))
print('b1: ' + str(list(reversed(b[1]))))
print('b2: ' + str(list(reversed(b[2]))))
print('b3: ' + str(list(reversed(b[3]))))
print('------------ lut ---------------')
lut = buildLut(P0, [P1, P2, P3])
print('------------ mul ---------------')
# b[0][L-1] is always 0
print(f'L-1: {getIndex(b, L-1)}')
print(f'L-2: {getIndex(b, L-2)}')
print(f'L-3: {getIndex(b, L-3)}')
print(f'L-4: {getIndex(b, L-4)}')
print(f'L-5: {getIndex(b, L-5)}')
print(f'L-6: {getIndex(b, L-6)}')
factors = [0, 0, 0, 0] # Track the decomposed scalar applied (debugging)
updateFactors(factors, b, L-1)
Q = lut[getIndex(b, L-1)]
for bit in range(L-2, -1, -1):
Q *= 2
Q += (1 - 2 * b[0][bit]) * lut[getIndex(b, bit)]
doubleFactors(factors)
updateFactors(factors, b, bit)
if even:
Q -= P0
print('----')
print('final Q: ' + pointToString(Q))
print('expected: ' + pointToString(expected))
print('----')
printFactors(factors)
print('Mul expected:')
print(' k0: ' + k0.hex())
print(' k1: ' + k1.hex())
print(' k2: ' + k2.hex())
print(' k3: ' + k3.hex())
assert Q == expected
# Test generator
set_random_seed(1337)
for i in range(1):
print('---------------------------------------')
# scalar = randrange(r) # Pick an integer below curve order
# P = G2.random_point()
# P = clearCofactorG2(P)
# scalar = Integer('0x1f7bef2a74f3bf8ac0225a9edfa514bb5666b15e7be3e929059f2ef75f0035a6')
# P = G2([
# Fp2([Integer('0x989f16bcb9da60ef72383e6134ba194f57e30109806304336c0c995e2857ed20bf5b6e03d6fe1424332e9c666cbd10a'),
# Integer('0x16692643cb5e7466e3730d3ea775c7741ac34d670b3be685761a7d6ab722a2673ce374ddab87b7c4d2675ba2199f9121')]),
# Fp2([Integer('0x931e416488bef7cb4a053e4bd86ef44818bc03a5be5b04606b2a4dc1d139a3a452f5f7172f24eeaad84702b73b155bb'),
# Integer('0x192c3e2a6619473216b7bb2447448cdbeb9f7e3c9486b0a05aadf6dcd91d7cb275a5d84c1a362628efffbc8711a62a67')])
# ])
# This integer leads to negative miniscalar for proper handling it requires either:
# 1. Negating it and then negating the corresponding curve point P
# 2. Adding an extra bit to the recoding, which will do the right thing™
#
# For implementation solution 1 is faster:
# - Double + Add is about 5000~8000 cycles on 6 64-bits limbs (BLS12-381)
# - Conditional negate is about 10 cycles per Fp, on G2 projective we have 3 (coords) * 2 (Fp2) * 10 (cycles) ~= 60 cycles
# We need to test the mini scalar, which is 65 bits so 2 Fp so about 2 cycles
# and negate it as well.
# scalar = Integer('0x6448f296d9b1a8d81319a0b789df04c587c6165776ccf39f50a354204aabe0da')
# P = G2([
# Fp2([Integer('0x5adc112fb04bf4ca642d5a7d7343ccd6b93546442d2fff5b9d32c15e456d54884cba49dd7f94ce4ddaad4018e55d0f2'),
# Integer('0x5d1c5bbf5d7a833dc76ba206bfa99c281fc37941be050e18f8c6d267b2376b3634d8ad6eb951e52a6d096315abd17d6')]),
# Fp2([Integer('0x15a959e54981fab9ac3c6f5bfd6fb60a50a916bd43d96a09922a54309b84812736581bfa728670cba864b08b9e391bb9'),
# Integer('0xf5d6d74f1dd3d9c07451340b8f6990fe93a28fe5e176564eb920bf17eb02df8b6f1e626eda5542ff415f89d51943001')])
# ])
# The following input fails in Constantine when negating the base point
# but not when adding an extra bit
# scalar = Integer('0x5668a2332db27199dcfb7cbdfca6317c2ff128db26d7df68483e0a095ec8e88f')
# P = G2([
# Fp2([Integer('0xa8c5649d2df1bae84fd9e8bfcde5113937b3acea22d67ddfedaf1fb8de8c1ef4c70591cf505c24c31e54020c2c510c3'),
# Integer('0xa0553f98229a6a067489c3ee204161c11e96f421b3e9c145dc3865b03e9d4ff6cab14c5b5308ecd31173f954463690c')]),
# Fp2([Integer('0xb29d8dfe18dc41b4826c3a102c1bf8f306cb42433cc36ee38080f47a324c02a678f9daed0a2bc577c18b9865de029f0'),
# Integer('0x558cdabf11e37c5c5e8abd668bbdd71bb3f07f320948ccaac8a207359fffe38424bfd9b1ef1d24b28b2fbb9f76faff1')])
# ])
# The following fails when we have both extra bit and negation of the first
# scalar if it is negative.
# it also uses 65 bits instead of teh expected max of 64
# And triggers an off by 1 when negating
scalar = Integer('0x6448f296d9b1a8d81319a0b789df04c587c6165776ccf39f50a354204aabe0da')
P = G2([
Fp2([Integer('0x5adc112fb04bf4ca642d5a7d7343ccd6b93546442d2fff5b9d32c15e456d54884cba49dd7f94ce4ddaad4018e55d0f2'),
Integer('0x5d1c5bbf5d7a833dc76ba206bfa99c281fc37941be050e18f8c6d267b2376b3634d8ad6eb951e52a6d096315abd17d6')]),
Fp2([Integer('0x15a959e54981fab9ac3c6f5bfd6fb60a50a916bd43d96a09922a54309b84812736581bfa728670cba864b08b9e391bb9'),
Integer('0xf5d6d74f1dd3d9c07451340b8f6990fe93a28fe5e176564eb920bf17eb02df8b6f1e626eda5542ff415f89d51943001')])
])
subgroup_check(P)
scalarMulEndo(scalar, P)