constantine/tests/math/t_pairing_cyclotomic_subgro...

167 lines
5.3 KiB
Nim
Raw Normal View History

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
std/[unittest, times],
# Internals
../../constantine/platforms/abstractions,
../../constantine/math/arithmetic,
../../constantine/math/extension_fields,
../../constantine/math/config/curves,
../../constantine/math/io/[io_bigints, io_extfields],
../../constantine/math/pairings/cyclotomic_subgroups,
../../constantine/math/isogenies/frobenius,
# Test utilities
../../helpers/[prng_unsafe, static_for]
const
Iters = 4
TestCurves = [
BN254_Nogami,
BN254_Snarks,
BLS12_377,
BLS12_381
]
type
RandomGen = enum
Uniform
HighHammingWeight
Long01Sequence
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "\n------------------------------------------------------\n"
echo "test_pairing_fp12_sparse xoshiro512** seed: ", seed
func random_elem(rng: var RngState, F: typedesc, gen: RandomGen): F {.inline, noInit.} =
if gen == Uniform:
result = rng.random_unsafe(F)
elif gen == HighHammingWeight:
result = rng.random_highHammingWeight(F)
else:
result = rng.random_long01Seq(F)
suite "Pairing - Cyclotomic subgroup - GΦ₁₂(p) = {α ∈ Fp¹² : α^Φ₁₂(p) ≡ 1 (mod p¹²)}" & " [" & $WordBitWidth & "-bit mode]":
test "Easy part of the final exponentiation maps to the cyclotomic subgroup":
proc test_final_exp_easy_cycl(C: static Curve, gen: static RandomGen) =
for _ in 0 ..< Iters:
var f = rng.random_elem(Fp12[C], gen)
f.finalExpEasy()
var f4, minus_f2: typeof(f)
minus_f2.frobenius_map(f, 2) # f^p²
f4.frobenius_map(minus_f2, 2) # f^p⁴
minus_f2.conj() # f^⁻²p
f *= f4
f *= minus_f2 # f^(p⁴-p²+1) = f^Φ₁₂(p)
check: bool(f.isOne())
staticFor(curve, TestCurves):
test_final_exp_easy_cycl(curve, gen = Uniform)
test_final_exp_easy_cycl(curve, gen = HighHammingWeight)
test_final_exp_easy_cycl(curve, gen = Long01Sequence)
test "Cyclotomic inverse":
proc test_cycl_inverse(C: static Curve, gen: static RandomGen) =
for _ in 0 ..< Iters:
var f = rng.random_elem(Fp12[C], gen)
f.finalExpEasy()
var g = f
f.cyclotomic_inv()
f *= g
check: bool(f.isOne())
staticFor(curve, TestCurves):
test_cycl_inverse(curve, gen = Uniform)
test_cycl_inverse(curve, gen = HighHammingWeight)
test_cycl_inverse(curve, gen = Long01Sequence)
test "Cyclotomic squaring":
proc test_cycl_squaring_in_place(C: static Curve, gen: static RandomGen) =
for _ in 0 ..< Iters:
var f = rng.random_elem(Fp12[C], gen)
f.finalExpEasy()
var g = f
f.square()
g.cyclotomic_square()
check: bool(f == g)
staticFor(curve, TestCurves):
test_cycl_squaring_in_place(curve, gen = Uniform)
test_cycl_squaring_in_place(curve, gen = HighHammingWeight)
test_cycl_squaring_in_place(curve, gen = Long01Sequence)
proc test_cycl_squaring_out_place(C: static Curve, gen: static RandomGen) =
for _ in 0 ..< Iters:
var f = rng.random_elem(Fp12[C], gen)
f.finalExpEasy()
var g = f
var r: typeof(f)
f.square()
r.cyclotomic_square(g)
check: bool(f == r)
staticFor(curve, TestCurves):
test_cycl_squaring_out_place(curve, gen = Uniform)
test_cycl_squaring_out_place(curve, gen = HighHammingWeight)
test_cycl_squaring_out_place(curve, gen = Long01Sequence)
test "Compressed cyclotomic squarings":
proc test_compressed_cycl_squarings(C: static Curve, gen: static RandomGen) =
for _ in 0 ..< Iters:
var f = rng.random_elem(Fp12[C], gen)
f.finalExpEasy()
var g = f
f.cycl_sqr_repeated(55)
g.cyclotomic_exp_compressed(g, [55])
check: bool(f == g)
staticFor(curve, TestCurves):
test_compressed_cycl_squarings(curve, gen = Uniform)
test_compressed_cycl_squarings(curve, gen = HighHammingWeight)
test_compressed_cycl_squarings(curve, gen = Long01Sequence)
test "Compressed cyclotomic exponentiation":
proc test_compressed_cycl_exp(C: static Curve, gen: static RandomGen) =
for _ in 0 ..< Iters:
var f = rng.random_elem(Fp12[C], gen)
f.finalExpEasy()
var g = f
let f2 = f
# 0b1000000000001000000000000000000000000000000010000000000000000
const e = BigInt[61].fromHex"0x1001000000010000"
f.cyclotomic_exp(f2, e, invert = false)
g.cyclotomic_exp_compressed(g, [16, 32, 12])
check: bool(f == g)
staticFor(curve, TestCurves):
test_compressed_cycl_exp(curve, gen = Uniform)
test_compressed_cycl_exp(curve, gen = HighHammingWeight)
test_compressed_cycl_exp(curve, gen = Long01Sequence)