constantine/tests/math/t_pairing_template.nim

146 lines
5.0 KiB
Nim
Raw Normal View History

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
std/unittest, times,
# Internals
../../constantine/platforms/abstractions,
../../constantine/math/arithmetic,
../../constantine/math/extension_fields,
../../constantine/math/config/curves,
../../constantine/math/elliptic/[ec_shortweierstrass_affine, ec_shortweierstrass_projective],
../../constantine/math/curves/[zoo_subgroups, zoo_pairings],
../../constantine/math/pairing/cyclotomic_subgroup,
../../constantine/math/io/io_extfields,
# Test utilities
../../helpers/prng_unsafe
export
prng_unsafe, times, unittest,
ec_shortweierstrass_affine, ec_shortweierstrass_projective,
arithmetic, extension_fields,
io_extfields,
cyclotomic_subgroup,
abstractions, curves
type
RandomGen* = enum
Uniform
HighHammingWeight
Long01Sequence
template affineType[F; G: static Subgroup](
ec: ECP_ShortW_Prj[F, G]): type =
ECP_ShortW_Aff[F, G]
func clearCofactor[F; G: static Subgroup](
ec: var ECP_ShortW_Aff[F, G]) =
# For now we don't have any affine operation defined
var t {.noInit.}: ECP_ShortW_Prj[F, G]
t.fromAffine(ec)
t.clearCofactor()
ec.affine(t)
func random_point*(rng: var RngState, EC: typedesc, randZ: bool, gen: RandomGen): EC {.noInit.} =
if gen == Uniform:
result = rng.random_unsafe(EC)
result.clearCofactor()
elif gen == HighHammingWeight:
result = rng.random_highHammingWeight(EC)
result.clearCofactor()
else:
result = rng.random_long01Seq(EC)
result.clearCofactor()
template runPairingTests*(Iters: static int, C: static Curve, G1, G2, GT: typedesc, pairing_fn: untyped): untyped {.dirty.}=
bind affineType
var rng: RngState
let timeseed = uint32(toUnix(getTime()) and (1'i64 shl 32 - 1)) # unixTime mod 2^32
seed(rng, timeseed)
echo "\n------------------------------------------------------\n"
echo "test_pairing_",$C,"_optate xoshiro512** seed: ", timeseed
proc test_bilinearity_double_impl(randZ: bool, gen: RandomGen) =
for _ in 0 ..< Iters:
let P = rng.random_point(G1, randZ, gen)
let Q = rng.random_point(G2, randZ, gen)
var P2: typeof(P)
var Q2: typeof(Q)
var r {.noInit.}, r2 {.noInit.}, r3 {.noInit.}: GT
P2.double(P)
Q2.double(Q)
var Pa {.noInit.}, Pa2 {.noInit.}: affineType(P)
var Qa {.noInit.}, Qa2 {.noInit.}: affineType(Q)
Pa.affine(P)
Pa2.affine(P2)
Qa.affine(Q)
Qa2.affine(Q2)
r.pairing_fn(Pa, Qa)
r.square()
r2.pairing_fn(Pa2, Qa)
r3.pairing_fn(Pa, Qa2)
doAssert bool(not r.isZero())
doAssert bool(not r.isOne())
doAssert bool(r == r2)
doAssert bool(r == r3)
doAssert bool(r2 == r3)
suite "Pairing - Optimal Ate on " & $C & " [" & $WordBitwidth & "-bit mode]":
test "Bilinearity e([2]P, Q) = e(P, [2]Q) = e(P, Q)^2":
test_bilinearity_double_impl(randZ = false, gen = Uniform)
test_bilinearity_double_impl(randZ = false, gen = HighHammingWeight)
test_bilinearity_double_impl(randZ = false, gen = Long01Sequence)
func random_elem*(rng: var RngState, F: typedesc, gen: RandomGen): F {.inline, noInit.} =
if gen == Uniform:
result = rng.random_unsafe(F)
elif gen == HighHammingWeight:
result = rng.random_highHammingWeight(F)
else:
result = rng.random_long01Seq(F)
template runGTsubgroupTests*(Iters: static int, GT: typedesc, finalExpHard_fn: untyped): untyped {.dirty.}=
bind affineType
var rng: RngState
let timeseed = uint32(toUnix(getTime()) and (1'i64 shl 32 - 1)) # unixTime mod 2^32
seed(rng, timeseed)
echo "\n------------------------------------------------------\n"
echo "test_pairing_",$GT.C,"_gt xoshiro512** seed: ", timeseed
proc test_gt_impl(gen: RandomGen) =
stdout.write " "
for _ in 0 ..< Iters:
let a = rng.random_elem(GT, gen)
doAssert not bool a.isInCyclotomicSubgroup(), "The odds of generating randomly such an element are too low a: " & a.toHex()
var a2 = a
a2.finalExpEasy()
doAssert bool a2.isInCyclotomicSubgroup()
doAssert not bool a2.isInPairingSubgroup(), "The odds of generating randomly such an element are too low a2: " & a.toHex()
var a3 = a2
finalExpHard_fn(a3)
doAssert bool a3.isInCyclotomicSubgroup()
doAssert bool a3.isInPairingSubgroup()
stdout.write '.'
stdout.write '\n'
suite "Pairing - GT subgroup " & $GT.C & " [" & $WordBitwidth & "-bit mode]":
test "Final Exponentiation and GT-subgroup membership":
test_gt_impl(gen = Uniform)
test_gt_impl(gen = HighHammingWeight)
test_gt_impl(gen = Long01Sequence)