constantine/sage/derive_hash_to_curve.sage

330 lines
10 KiB
Python
Raw Normal View History

#!/usr/bin/sage
# vim: syntax=python
# vim: set ts=2 sw=2 et:
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Frobenius constants
#
# ############################################################
# Imports
# ---------------------------------------------------------
import os
import inspect, textwrap
# Working directory
# ---------------------------------------------------------
os.chdir(os.path.dirname(__file__))
# Sage imports
# ---------------------------------------------------------
# Accelerate arithmetic by accepting probabilistic proofs
from sage.structure.proof.all import arithmetic
arithmetic(False)
load('curves.sage')
# Utilities
# ---------------------------------------------------------
def fp2_to_hex(a):
v = vector(a)
return '0x' + Integer(v[0]).hex() + ' + β * ' + '0x' + Integer(v[1]).hex()
def field_to_nim(value, field, curve, prefix = "", comment_above = "", comment_right = ""):
result = '# ' + comment_above + '\n' if comment_above else ''
comment_right = ' # ' + comment_right if comment_right else ''
if field == 'Fp2':
v = vector(value)
result += inspect.cleandoc(f"""
{prefix}Fp2[{curve}].fromHex( {comment_right}
"0x{Integer(v[0]).hex()}",
"0x{Integer(v[1]).hex()}"
)""")
elif field == 'Fp':
result += inspect.cleandoc(f"""
{prefix}Fp[{curve}].fromHex( {comment_right}
"0x{Integer(value).hex()}")
""")
else:
raise NotImplementedError()
return result
def dump_poly(name, poly, field, curve):
result = f'const {name}* = [\n'
result += ' # Polynomial k₀ + k₁ x + k₂ x² + k₃ x³ + ... + kₙ xⁿ\n'
result += ' # The polynomial is stored as an array of coefficients ordered from k₀ to kₙ\n'
result += '\n'
poly = list(poly)
lastRow = len(poly) - 1
for rowID, val in enumerate(reversed(poly)):
(coef, power) = val
result += textwrap.indent(
field_to_nim(
coef, field, curve,
comment_above = str(power)
),
' ')
result += ',\n' if rowID != lastRow else '\n'
result += ']'
return result
# Unused
# ---------------------------------------------------------
def find_z_sswu(F, A, B):
"""
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#ref-SAGE
Arguments:
- F, a field object, e.g., F = GF(2^521 - 1)
- A and B, the coefficients of the curve equation = + A * x + B
"""
R.<xx> = F[] # Polynomial ring over F
g = xx^3 + F(A) * xx + F(B) # y² = g(x) = x³ + A * x + B
ctr = F.gen()
while True:
for Z_cand in (F(ctr), F(-ctr)):
if Z_cand.is_square():
# Criterion 1: Z is non-square in F.
continue
if Z_cand == F(-1):
# Criterion 2: Z != -1 in F.
continue
if not (g - Z_cand).is_irreducible():
# Criterion 3: g(x) - Z is irreducible over F.
continue
if g(B / (Z_cand * A)).is_square():
# Criterion 4: g(B / (Z * A)) is square in F.
return Z_cand
ctr += 1
# BLS12-381 G2
# ---------------------------------------------------------
# Hardcoding from spec:
# - https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-8.8.2
# - https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/blob/f7dd3761/poc/sswu_opt_9mod16.sage#L142-L148
def genBLS12381G2_H2C_constants(curve_config):
curve_name = 'BLS12_381'
# ------------------------------------------
embdeg = curve_config[curve_name]['tower']['embedding_degree']
twdeg = curve_config[curve_name]['tower']['twist_degree']
g2field = f'Fp{embdeg//twdeg}' if (embdeg//twdeg) > 1 else 'Fp'
p = curve_config[curve_name]['field']['modulus']
Fp = GF(p)
K.<u> = PolynomialRing(Fp)
if g2field == 'Fp2':
QNR_Fp = curve_config[curve_name]['tower']['QNR_Fp']
Fp2.<beta> = Fp.extension(u^2 - QNR_Fp)
else:
SNR_Fp = curve_config[curve_name]['tower']['SNR_Fp']
Fp2.<beta> = Fp.extension(u^2 - SNR_Fp)
# ------------------------------------------
# Hash to curve isogenous curve parameters
# y² = x³ + A'*x + B'
print('\n----> Hash-to-Curve map to isogenous BLS12-381 E\'2 <----\n')
buf = inspect.cleandoc(f"""
# Hash-to-Curve map to isogenous BLS12-381 E'2 constants
# -----------------------------------------------------------------
#
# y² = x³ + A'*x + B' with p² = q ≡ 9 (mod 16), p the BLS12-381 characteristic (base modulus)
#
# Hardcoding from spec:
# - https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-8.8.2
# - https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/blob/f7dd3761/poc/sswu_opt_9mod16.sage#L142-L148
""")
buf += '\n\n'
# Base constants
Aprime_E2 = Fp2([0, 240])
Bprime_E2 = Fp2([1012, 1012])
Z = Fp2([-2, -1])
# Extra
minus_A = -Aprime_E2
ZmulA = Z * Aprime_E2
inv_Z3 = (Z^3)^-1 # modular inverse of Z³
(a, b) = vector(inv_Z3)
squared_norm_inv_Z3 = a^2 + b^2 # ||1/Z³||²
# x^((p-3)/4)) ≡ 1/√x (mod p) if p ≡ 3 (mod 4)
inv_norm_inv_Z3 = squared_norm_inv_Z3^((p-3)/4) # 1/||1/Z³||
buf += f'const {curve_name}_h2c_G2_Aprime_E2* = '
buf += field_to_nim(Aprime_E2, 'Fp2', curve_name, comment_right = "240𝑖")
buf += '\n'
buf += f'const {curve_name}_h2c_G2_Bprime_E2* = '
buf += field_to_nim(Bprime_E2, 'Fp2', curve_name, comment_right = "1012 * (1 + 𝑖)")
buf += '\n'
buf += f'const {curve_name}_h2c_G2_Z* = '
buf += field_to_nim(Z, 'Fp2', curve_name, comment_right = "-(2 + 𝑖)")
buf += '\n'
buf += f'const {curve_name}_h2c_G2_minus_A* = '
buf += field_to_nim(minus_A, 'Fp2', curve_name, comment_right = "-240𝑖")
buf += '\n'
buf += f'const {curve_name}_h2c_G2_ZmulA* = '
buf += field_to_nim(ZmulA, 'Fp2', curve_name, comment_right = "Z*A = 240-480𝑖")
buf += '\n'
buf += f'const {curve_name}_h2c_G2_inv_Z3* = '
buf += field_to_nim(inv_Z3, 'Fp2', curve_name, comment_right = "1/Z³")
buf += '\n'
buf += f'const {curve_name}_h2c_G2_squared_norm_inv_Z3* = '
buf += field_to_nim(squared_norm_inv_Z3, 'Fp', curve_name, comment_right = "||1/Z³||²")
buf += '\n'
buf += f'const {curve_name}_h2c_G2_inv_norm_inv_Z3* = '
buf += field_to_nim(inv_norm_inv_Z3, 'Fp', curve_name, comment_right = "1/||1/Z³||")
buf += '\n'
return buf
def genBLS12381G2_H2C_isogeny_map(curve_config):
curve_name = 'BLS12_381'
# ------------------------------------------
p = curve_config[curve_name]['field']['modulus']
# This extension field construction
# does not work with isogenies :/
#
# embdeg = curve_config[curve_name]['tower']['embedding_degree']
# twdeg = curve_config[curve_name]['tower']['twist_degree']
# g2field = f'Fp{embdeg//twdeg}' if (embdeg//twdeg) > 1 else 'Fp'
#
# Fp = GF(p)
# K.<u> = PolynomialRing(Fp)
# if g2field == 'Fp2':
# QNR_Fp = curve_config[curve_name]['tower']['QNR_Fp']
# Fp2.<beta> = Fp.extension(u^2 - QNR_Fp)
# else:
# SNR_Fp = curve_config[curve_name]['tower']['SNR_Fp']
# Fp2.<beta> = Fp.extension(u^2 - SNR_Fp)
# ------------------------------------------
QNR_Fp = curve_config[curve_name]['tower']['QNR_Fp']
Fp2.<beta> = GF(p^2, modulus=(x^2-QNR_Fp))
# Hash to curve isogenous curve parameters
# y² = x³ + A'*x + B'
print('\n----> Hash-to-Curve 3-isogeny map BLS12-381 E\'2 constants <----\n')
buf = inspect.cleandoc(f"""
# Hash-to-Curve 3-isogeny map BLS12-381 E'2 constants
# -----------------------------------------------------------------
#
# The polynomials map a point (x', y') on the isogenous curve E'2
# to (x, y) on E2, represented as (xnum/xden, y' * ynum/yden)
""")
buf += '\n\n'
# Base constants - E2
A = curve_config[curve_name]['curve']['a']
B = curve_config[curve_name]['curve']['b']
twist = curve_config[curve_name]['tower']['twist']
SNR_Fp2 = curve_config[curve_name]['tower']['SNR_Fp2']
if twist == 'M_twist':
Btwist = B * Fp2(SNR_Fp2)
else:
Btwist = B / Fp2(SNR_Fp2)
E2 = EllipticCurve(Fp2, [A, B * Fp2(SNR_Fp2)])
# Base constants - Isogenous curve E'2, degree 3
Aprime_E2 = Fp2([0, 240])
Bprime_E2 = Fp2([1012, 1012])
Eprime2 = EllipticCurve(Fp2, [Aprime_E2, Bprime_E2])
iso_kernel = [6 * (1 - beta), 1]
iso = EllipticCurveIsogeny(E=Eprime2, kernel=iso_kernel, codomain=E2, degree=3)
if (- iso.rational_maps()[1])(1, 1) > iso.rational_maps()[1](1, 1):
iso.switch_sign()
(xm, ym) = iso.rational_maps()
maps = (xm.numerator(), xm.denominator(), ym.numerator(), ym.denominator())
buf += dump_poly(
'BLS12_381_h2c_G2_3_isogeny_map_xnum',
xm.numerator(), 'Fp2', curve_name)
buf += '\n'
buf += dump_poly(
'BLS12_381_h2c_G2_3_isogeny_map_xden',
xm.denominator(), 'Fp2', curve_name)
buf += '\n'
buf += dump_poly(
'BLS12_381_h2c_G2_3_isogeny_map_ynum',
ym.numerator(), 'Fp2', curve_name)
buf += '\n'
buf += dump_poly(
'BLS12_381_h2c_G2_3_isogeny_map_yden',
ym.denominator(), 'Fp2', curve_name)
return buf
# CLI
# ---------------------------------------------------------
if __name__ == "__main__":
# Usage
# BLS12-381
# sage sage/derive_hash_to_curve.sage BLS12_381 G2
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("curve",nargs="+")
args = parser.parse_args()
curve = args.curve[0]
group = args.curve[1]
if curve == 'BLS12_381' and group == 'G2':
h2c = genBLS12381G2_H2C_constants(Curves)
h2c += '\n\n'
h2c += genBLS12381G2_H2C_isogeny_map(Curves)
with open(f'{curve.lower()}_g2_hash_to_curve.nim', 'w') as f:
f.write(copyright())
f.write('\n\n')
f.write(inspect.cleandoc("""
import
../config/curves,
../io/[io_fields, io_towers]
"""))
f.write('\n\n')
f.write(h2c)
print(f'Successfully created {curve.lower()}_g2_hash_to_curve.nim')
else:
raise ValueError(
curve + group +
' is not configured '
)