265 lines
7.6 KiB
Nim
265 lines
7.6 KiB
Nim
|
# Research into the paper
|
|||
|
|
|||
|
# - Efficient and Secure Algorithms for GLV-Based Scalar
|
|||
|
# Multiplication and their Implementation on GLV-GLS
|
|||
|
# Curves (Extended Version)
|
|||
|
# Armando Faz-Hernández, Patrick Longa, Ana H. Sánchez, 2013
|
|||
|
# https://eprint.iacr.org/2013/158.pdf
|
|||
|
|
|||
|
import ../constantine/math/elliptic/ec_endomorphism_accel {.all.},
|
|||
|
../constantine/platforms/abstractions,
|
|||
|
../constantine/math/io/io_bigints,
|
|||
|
../constantine/math/arithmetic
|
|||
|
|
|||
|
proc toString(glvSac: GLV_SAC): string =
|
|||
|
for j in 0 ..< glvSac.M:
|
|||
|
result.add "k" & $j & ": ["
|
|||
|
for i in countdown(glvSac.LengthInDigits-1, 0):
|
|||
|
result.add " " & (block:
|
|||
|
case glvSac[j][i]
|
|||
|
of 0: "0"
|
|||
|
of 1: "1"
|
|||
|
else:
|
|||
|
raise newException(ValueError, "Unexpected encoded value: " & $glvSac[j][i])
|
|||
|
)
|
|||
|
result.add " ]\n"
|
|||
|
|
|||
|
iterator bits(u: SomeInteger): tuple[bitIndex: int32, bitValue: uint8] =
|
|||
|
## bit iterator, starts from the least significant bit
|
|||
|
var u = u
|
|||
|
var idx = 0'i32
|
|||
|
while u != 0:
|
|||
|
yield (idx, uint8(u and 1))
|
|||
|
u = u shr 1
|
|||
|
inc idx
|
|||
|
|
|||
|
func buildLookupTable_naive[M: static int](
|
|||
|
P: string,
|
|||
|
endomorphisms: array[M-1, string],
|
|||
|
lut: var array[1 shl (M-1), string],
|
|||
|
) =
|
|||
|
## Checking the LUT by building strings of endomorphisms additions
|
|||
|
## This naively translates the lookup table algorithm
|
|||
|
## Compute P[u] = P0 + u0 P1 +...+ um−2 Pm−1 for all 0≤u<2m−1, where
|
|||
|
## u= (um−2,...,u0)_2.
|
|||
|
## The number of additions done per entries is equal to the
|
|||
|
## iteration variable `u` Hamming Weight
|
|||
|
for u in 0 ..< 1 shl (M-1):
|
|||
|
lut[u] = P
|
|||
|
for u in 0 ..< 1 shl (M-1):
|
|||
|
for idx, bit in bits(u):
|
|||
|
if bit == 1:
|
|||
|
lut[u] &= " + " & endomorphisms[idx]
|
|||
|
|
|||
|
func buildLookupTable_reuse[M: static int](
|
|||
|
P: string,
|
|||
|
endomorphisms: array[M-1, string],
|
|||
|
lut: var array[1 shl (M-1), string],
|
|||
|
) =
|
|||
|
## Checking the LUT by building strings of endomorphisms additions
|
|||
|
## This reuses previous table entries so that only one addition is done
|
|||
|
## per new entries
|
|||
|
lut[0] = P
|
|||
|
for u in 1'u32 ..< 1 shl (M-1):
|
|||
|
let msb = u.log2_vartime() # No undefined, u != 0
|
|||
|
lut[u] = lut[u.clearBit(msb)] & " + " & endomorphisms[msb]
|
|||
|
|
|||
|
proc main_lut() =
|
|||
|
const M = 4 # GLS-4 decomposition
|
|||
|
const miniBitwidth = 4 # Bitwidth of the miniscalars resulting from scalar decomposition
|
|||
|
|
|||
|
var k: MultiScalar[M, miniBitwidth]
|
|||
|
var kRecoded: GLV_SAC[M, miniBitwidth]
|
|||
|
|
|||
|
k[0].fromUint(11)
|
|||
|
k[1].fromUint(6)
|
|||
|
k[2].fromuint(14)
|
|||
|
k[3].fromUint(3)
|
|||
|
|
|||
|
kRecoded.nDimMultiScalarRecoding(k)
|
|||
|
|
|||
|
echo "Recoded bytesize: ", sizeof(kRecoded)
|
|||
|
echo kRecoded.toString()
|
|||
|
|
|||
|
var lut: array[1 shl (M-1), string]
|
|||
|
let
|
|||
|
P = "P0"
|
|||
|
endomorphisms = ["P1", "P2", "P3"]
|
|||
|
|
|||
|
buildLookupTable_naive(P, endomorphisms, lut)
|
|||
|
echo lut
|
|||
|
doAssert lut[0] == "P0"
|
|||
|
doAssert lut[1] == "P0 + P1"
|
|||
|
doAssert lut[2] == "P0 + P2"
|
|||
|
doAssert lut[3] == "P0 + P1 + P2"
|
|||
|
doAssert lut[4] == "P0 + P3"
|
|||
|
doAssert lut[5] == "P0 + P1 + P3"
|
|||
|
doAssert lut[6] == "P0 + P2 + P3"
|
|||
|
doAssert lut[7] == "P0 + P1 + P2 + P3"
|
|||
|
|
|||
|
var lut_reuse: array[1 shl (M-1), string]
|
|||
|
buildLookupTable_reuse(P, endomorphisms, lut_reuse)
|
|||
|
echo lut_reuse
|
|||
|
doAssert lut == lut_reuse
|
|||
|
|
|||
|
main_lut()
|
|||
|
echo "---------------------------------------------"
|
|||
|
|
|||
|
# This tests the multiplication against the Table 1
|
|||
|
# of the paper
|
|||
|
|
|||
|
# Coef Decimal Binary GLV-SAC recoded
|
|||
|
# | k0 | | 11 | | 0 1 0 1 1 | | 1 -1 1 -1 1 |
|
|||
|
# | k1 | = | 6 | = | 0 0 1 1 0 | = | 1 -1 0 -1 0 |
|
|||
|
# | k2 | | 14 | | 0 1 1 1 0 | | 1 0 0 -1 0 |
|
|||
|
# | k3 | | 3 | | 0 0 0 1 1 | | 0 0 1 -1 1 |
|
|||
|
|
|||
|
# i | 3 2 1 0
|
|||
|
# -------------------+----------------------------------------------------------------------
|
|||
|
# 2Q | 2P0+2P1+2P2 2P0+2P1+4P2 6P0+4P1+8P2+2P3 10P0+6P1+14P2+2P3
|
|||
|
# Q + sign_i T[ki] | P0+P1+2P2 3P0+2P1+4P2+P3 5P0+3P1+7P2+P3 11P0+6P1+14P2+3P3
|
|||
|
|
|||
|
type Endo = enum
|
|||
|
P0
|
|||
|
P1
|
|||
|
P2
|
|||
|
P3
|
|||
|
|
|||
|
func buildLookupTable_reuse[M: static int](
|
|||
|
P: Endo,
|
|||
|
endomorphisms: array[M-1, Endo],
|
|||
|
lut: var array[1 shl (M-1), set[Endo]],
|
|||
|
) =
|
|||
|
## Checking the LUT by building strings of endomorphisms additions
|
|||
|
## This reuses previous table entries so that only one addition is done
|
|||
|
## per new entries
|
|||
|
lut[0].incl P
|
|||
|
for u in 1'u32 ..< 1 shl (M-1):
|
|||
|
let msb = u.log2_vartime() # No undefined, u != 0
|
|||
|
lut[u] = lut[u.clearBit(msb)] + {endomorphisms[msb]}
|
|||
|
|
|||
|
|
|||
|
proc mainFullMul() =
|
|||
|
const M = 4 # GLS-4 decomposition
|
|||
|
const miniBitwidth = 4 # Bitwidth of the miniscalars resulting from scalar decomposition
|
|||
|
const L = miniBitwidth + 1 # Bitwidth of the recoded scalars
|
|||
|
|
|||
|
var k: MultiScalar[M, L]
|
|||
|
var kRecoded: GLV_SAC[M, L]
|
|||
|
|
|||
|
k[0].fromUint(11)
|
|||
|
k[1].fromUint(6)
|
|||
|
k[2].fromuint(14)
|
|||
|
k[3].fromUint(3)
|
|||
|
|
|||
|
kRecoded.nDimMultiScalarRecoding(k)
|
|||
|
|
|||
|
echo kRecoded.toString()
|
|||
|
|
|||
|
var lut: array[1 shl (M-1), set[Endo]]
|
|||
|
let
|
|||
|
P = P0
|
|||
|
endomorphisms = [P1, P2, P3]
|
|||
|
|
|||
|
buildLookupTable_reuse(P, endomorphisms, lut)
|
|||
|
echo lut
|
|||
|
|
|||
|
var Q: array[Endo, int]
|
|||
|
|
|||
|
# Multiplication
|
|||
|
assert bool k[0].isOdd()
|
|||
|
# Q = sign_l-1 P[K_l-1]
|
|||
|
let idx = kRecoded.tableIndex(L-1)
|
|||
|
for p in lut[int(idx)]:
|
|||
|
Q[p] = if kRecoded[0][L-1] == 0: 1 else: -1
|
|||
|
# Loop
|
|||
|
for i in countdown(L-2, 0):
|
|||
|
# Q = 2Q
|
|||
|
for val in Q.mitems: val *= 2
|
|||
|
echo "2Q: ", Q
|
|||
|
# Q = Q + sign_l-1 P[K_l-1]
|
|||
|
let idx = kRecoded.tableIndex(i)
|
|||
|
for p in lut[int(idx)]:
|
|||
|
Q[p] += (if kRecoded[0][i] == 0: 1 else: -1)
|
|||
|
echo "Q + sign_l-1 P[K_l-1]: ", Q
|
|||
|
|
|||
|
echo Q
|
|||
|
|
|||
|
mainFullMul()
|
|||
|
echo "---------------------------------------------"
|
|||
|
|
|||
|
func buildLookupTable_m2w2(
|
|||
|
lut: var array[8, array[2, int]],
|
|||
|
) =
|
|||
|
## Build a lookup table for GLV with 2-dimensional decomposition
|
|||
|
## and window of size 2
|
|||
|
|
|||
|
# with [k0, k1] the mini-scalars with digits of size 2-bit
|
|||
|
#
|
|||
|
# 0 = 0b000 - encodes [0b01, 0b00] ≡ P0
|
|||
|
lut[0] = [1, 0]
|
|||
|
# 1 = 0b001 - encodes [0b01, 0b01] ≡ P0 - P1
|
|||
|
lut[1] = [1, -1]
|
|||
|
# 3 = 0b011 - encodes [0b01, 0b11] ≡ P0 + P1
|
|||
|
lut[3] = [1, 1]
|
|||
|
# 2 = 0b010 - encodes [0b01, 0b10] ≡ P0 + 2P1
|
|||
|
lut[2] = [1, 2]
|
|||
|
|
|||
|
# 4 = 0b100 - encodes [0b00, 0b00] ≡ 3P0
|
|||
|
lut[4] = [3, 0]
|
|||
|
# 5 = 0b101 - encodes [0b00, 0b01] ≡ 3P0 + P1
|
|||
|
lut[5] = [3, 1]
|
|||
|
# 6 = 0b110 - encodes [0b00, 0b10] ≡ 3P0 + 2P1
|
|||
|
lut[6] = [3, 2]
|
|||
|
# 7 = 0b111 - encodes [0b00, 0b11] ≡ 3P0 + 3P1
|
|||
|
lut[7] = [3, 3]
|
|||
|
|
|||
|
proc mainFullMulWindowed() =
|
|||
|
const M = 2 # GLS-2 decomposition
|
|||
|
const miniBitwidth = 8 # Bitwidth of the miniscalars resulting from scalar decomposition
|
|||
|
const W = 2 # Window
|
|||
|
const L = computeRecodedLength(miniBitwidth, W)
|
|||
|
|
|||
|
var k: MultiScalar[M, L]
|
|||
|
var kRecoded: GLV_SAC[M, L]
|
|||
|
|
|||
|
k[0].fromUint(11)
|
|||
|
k[1].fromUint(14)
|
|||
|
|
|||
|
kRecoded.nDimMultiScalarRecoding(k)
|
|||
|
|
|||
|
echo "Recoded bytesize: ", sizeof(kRecoded)
|
|||
|
echo kRecoded.toString()
|
|||
|
|
|||
|
var lut: array[8, array[range[P0..P1], int]]
|
|||
|
buildLookupTable_m2w2(lut)
|
|||
|
echo lut
|
|||
|
|
|||
|
# Assumes k[0] is odd to simplify test
|
|||
|
# and having to conditional substract at the end
|
|||
|
assert bool k[0].isOdd()
|
|||
|
|
|||
|
var Q: array[Endo, int]
|
|||
|
var isNeg: SecretBool
|
|||
|
|
|||
|
let idx = kRecoded.w2TableIndex((L div 2)-1, isNeg)
|
|||
|
for p, coef in lut[int(idx)]:
|
|||
|
# Unneeeded by construction
|
|||
|
# let sign = if isNeg: -1 else: 1
|
|||
|
Q[p] = coef
|
|||
|
|
|||
|
# Loop
|
|||
|
for i in countdown((L div 2)-2, 0):
|
|||
|
# Q = 4Q
|
|||
|
for val in Q.mitems: val *= 4
|
|||
|
echo "4Q: ", Q
|
|||
|
# Q = Q + sign_l-1 P[K_l-1]
|
|||
|
let idx = kRecoded.w2TableIndex(i, isNeg)
|
|||
|
for p, coef in lut[int(idx)]:
|
|||
|
let sign = (if bool isNeg: -1 else: 1)
|
|||
|
Q[p] += sign * coef
|
|||
|
echo "Q + sign_l-1 P[K_l-1]: ", Q
|
|||
|
|
|||
|
echo Q
|
|||
|
|
|||
|
mainFullMulWindowed()
|