constantine/research/kzg/fft_fr.nim

274 lines
8.2 KiB
Nim
Raw Normal View History

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
../../constantine/platforms/primitives,
../../constantine/math/config/curves,
../../constantine/math/arithmetic,
../../constantine/math/io/io_fields,
# Research
./strided_views,
./fft_lut
# See: https://github.com/ethereum/research/blob/master/kzg_data_availability/fft.py
# Quirks of the Python impl:
# - no tests of FFT alone?
# - a lot of "if type(x) == tuple else"
#
# See: https://github.com/protolambda/go-kate/blob/7bb4684/fft_fr.go#L19-L21
# The go port uses stride+offset to deal with skip iterator.
#
# Other readable FFTs includes:
# - https://github.com/kwantam/fffft
# - https://github.com/ConsenSys/gnark/blob/master/internal/math/bls381/fft/fft.go
# - https://github.com/poanetwork/threshold_crypto/blob/8820c11/src/poly_vals.rs#L332-L370
# - https://github.com/zkcrypto/bellman/blob/10c5010/src/domain.rs#L272-L315
# - Modern Computer Arithmetic, Brent and Zimmermann, p53 algorithm 2.2
# https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
# ############################################################
#
# Finite-Field Fast Fourier Transform
#
# ############################################################
#
# This is a research, unoptimized implementation of
# Finite Field Fast Fourier Transform
# In research phase we tolerate using
# - garbage collected types
# - and exceptions for fast prototyping
#
# In particular, in production all signed integers
# must be verified not to overflow
# and should not throw (or use unsigned)
# FFT Context
# ----------------------------------------------------------------
type
FFTStatus = enum
FFTS_Success
FFTS_TooManyValues = "Input length greater than the field 2-adicity (number of roots of unity)"
FFTS_SizeNotPowerOfTwo = "Input must be of a power of 2 length"
FFTDescriptor*[F] = object
## Metadata for FFT on field F
maxWidth: int
rootOfUnity: F
## The root of unity that generates all roots
expandedRootsOfUnity: seq[F]
## domain, starting and ending with 1
func expandRootOfUnity[F](rootOfUnity: F): seq[F] =
## From a generator root of unity
## expand to width + 1 values.
## (Last value is 1 for the reverse array)
# For a field of order q, there are gcd(n, q1)
# nth roots of unity, a.k.a. solutions to xⁿ ≡ 1 (mod q)
# but it's likely too long to compute bigint GCD
# so embrace heap (re-)allocations.
# Figuring out how to do to right size the buffers
# in production will be fun.
result.setLen(2)
result[0].setOne()
result[1] = rootOfUnity
while not result[result.len-1].isOne().bool:
result.setLen(result.len + 1)
result[result.len-1].prod(result[result.len-2], rootOfUnity)
# FFT Algorithm
# ----------------------------------------------------------------
# TODO: research Decimation in Time and Decimation in Frequency
# and FFT butterflies
func simpleFT[F](
output: var View[F],
vals: View[F],
rootsOfUnity: View[F]
) =
# FFT is a recursive algorithm
# This is the base-case using a O(n²) algorithm
let L = output.len
var last {.noInit.}, v {.noInit.}: F
for i in 0 ..< L:
last.prod(vals[0], rootsOfUnity[0])
for j in 1 ..< L:
v.prod(vals[j], rootsOfUnity[(i*j) mod L])
last += v
output[i] = last
func fft_internal[F](
output: var View[F],
vals: View[F],
rootsOfUnity: View[F]
) =
if output.len <= 4:
simpleFT(output, vals, rootsOfUnity)
return
# Recursive Divide-and-Conquer
let (evenVals, oddVals) = vals.splitAlternate()
var (outLeft, outRight) = output.splitMiddle()
let halfROI = rootsOfUnity.skipHalf()
fft_internal(outLeft, evenVals, halfROI)
fft_internal(outRight, oddVals, halfROI)
let half = outLeft.len
var y_times_root{.noinit.}: F
for i in 0 ..< half:
# FFT Butterfly
y_times_root .prod(output[i+half], rootsOfUnity[i])
output[i+half] .diff(output[i], y_times_root)
output[i] += y_times_root
func fft*[F](
desc: FFTDescriptor[F],
output: var openarray[F],
vals: openarray[F]): FFT_Status =
if vals.len > desc.maxWidth:
return FFTS_TooManyValues
if not vals.len.uint64.isPowerOf2_vartime():
return FFTS_SizeNotPowerOfTwo
let rootz = desc.expandedRootsOfUnity
.toView()
.slice(0, desc.maxWidth-1, desc.maxWidth div vals.len)
var voutput = output.toView()
fft_internal(voutput, vals.toView(), rootz)
return FFTS_Success
func ifft*[F](
desc: FFTDescriptor[F],
output: var openarray[F],
vals: openarray[F]): FFT_Status =
## Inverse FFT
if vals.len > desc.maxWidth:
return FFTS_TooManyValues
if not vals.len.uint64.isPowerOf2_vartime():
return FFTS_SizeNotPowerOfTwo
let rootz = desc.expandedRootsOfUnity
.toView()
.reversed()
.slice(0, desc.maxWidth-1, desc.maxWidth div vals.len)
var voutput = output.toView()
fft_internal(voutput, vals.toView(), rootz)
var invLen {.noInit.}: F
invLen.fromUint(vals.len.uint64)
invLen.inv()
for i in 0..< output.len:
output[i] *= invLen
return FFTS_Success
# FFT Descriptor
# ----------------------------------------------------------------
proc init*(T: type FFTDescriptor, maxScale: uint8): T =
result.maxWidth = 1 shl maxScale
result.rootOfUnity = scaleToRootOfUnity(T.F.C)[maxScale]
result.expandedRootsOfUnity =
result.rootOfUnity.expandRootOfUnity()
# Aren't you tired of reading about unity?
# ############################################################
#
# Sanity checks
#
# ############################################################
{.experimental: "views".}
when isMainModule:
import
std/[times, monotimes, strformat],
../../helpers/prng_unsafe
proc roundtrip() =
let fftDesc = FFTDescriptor[Fr[BLS12_381]].init(maxScale = 4)
var data = newSeq[Fr[BLS12_381]](fftDesc.maxWidth)
for i in 0 ..< fftDesc.maxWidth:
data[i].fromUint i.uint64
var coefs = newSeq[Fr[BLS12_381]](data.len)
let fftOk = fft(fftDesc, coefs, data)
doAssert fftOk == FFTS_Success
# display("coefs", 0, coefs)
var res = newSeq[Fr[BLS12_381]](data.len)
let ifftOk = ifft(fftDesc, res, coefs)
doAssert ifftOk == FFTS_Success
# display("res", 0, coefs)
for i in 0 ..< res.len:
if bool(res[i] != data[i]):
echo "Error: expected ", data[i].toHex(), " but got ", res[i].toHex()
quit 1
echo "FFT round-trip check SUCCESS"
proc warmup() =
# Warmup - make sure cpu is on max perf
let start = cpuTime()
var foo = 123
for i in 0 ..< 300_000_000:
foo += i*i mod 456
foo = foo mod 789
# Compiler shouldn't optimize away the results as cpuTime rely on sideeffects
let stop = cpuTime()
echo &"Warmup: {stop - start:>4.4f} s, result {foo} (displayed to avoid compiler optimizing warmup away)\n"
proc bench() =
echo "Starting benchmark ..."
const NumIters = 100
var rng: RngState
rng.seed 0x1234
# TODO: view types complain about mutable borrow
# in `random_unsafe` due to pseudo view type LimbsViewMut
# (which was views before Nim properly supported them)
warmup()
for scale in 4 ..< 16:
# Setup
let desc = FFTDescriptor[Fr[BLS12_381]].init(uint8 scale)
var data = newSeq[Fr[BLS12_381]](desc.maxWidth)
for i in 0 ..< desc.maxWidth:
# data[i] = rng.random_unsafe(data[i].typeof())
data[i].fromUint i.uint64
var coefsOut = newSeq[Fr[BLS12_381]](data.len)
# Bench
let start = getMonotime()
for i in 0 ..< NumIters:
let status = desc.fft(coefsOut, data)
doAssert status == FFTS_Success
let stop = getMonotime()
let ns = inNanoseconds((stop-start) div NumIters)
echo &"FFT scale {scale:>2} {ns:>8} ns/op"
roundtrip()
warmup()
bench()