2023-04-10 21:30:14 +00:00
|
|
|
# Constantine
|
|
|
|
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
|
|
|
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
|
|
|
# Licensed and distributed under either of
|
|
|
|
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
|
|
|
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
|
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
|
|
|
|
import
|
|
|
|
# Internals
|
|
|
|
../constantine/math/config/curves,
|
|
|
|
../constantine/math/arithmetic,
|
|
|
|
../constantine/math/elliptic/[
|
|
|
|
ec_shortweierstrass_affine,
|
|
|
|
ec_shortweierstrass_projective,
|
|
|
|
ec_shortweierstrass_jacobian,
|
|
|
|
ec_shortweierstrass_jacobian_extended,
|
|
|
|
ec_shortweierstrass_batch_ops_parallel,
|
|
|
|
ec_multi_scalar_mul,
|
|
|
|
ec_scalar_mul,
|
|
|
|
ec_multi_scalar_mul_parallel],
|
|
|
|
../constantine/math/constants/zoo_subgroups,
|
|
|
|
# Threadpool
|
2023-06-04 15:41:54 +00:00
|
|
|
../constantine/threadpool/[threadpool, partitioners],
|
2023-04-10 21:30:14 +00:00
|
|
|
# Helpers
|
|
|
|
../helpers/prng_unsafe,
|
|
|
|
./bench_elliptic_template,
|
|
|
|
./bench_blueprint
|
|
|
|
|
|
|
|
export bench_elliptic_template
|
|
|
|
|
|
|
|
# ############################################################
|
|
|
|
#
|
|
|
|
# Parallel Benchmark definitions
|
|
|
|
#
|
|
|
|
# ############################################################
|
|
|
|
|
|
|
|
proc multiAddParallelBench*(EC: typedesc, numPoints: int, iters: int) =
|
|
|
|
var points = newSeq[ECP_ShortW_Aff[EC.F, EC.G]](numPoints)
|
|
|
|
|
|
|
|
for i in 0 ..< numPoints:
|
|
|
|
points[i] = rng.random_unsafe(ECP_ShortW_Aff[EC.F, EC.G])
|
|
|
|
|
|
|
|
var r{.noInit.}: EC
|
|
|
|
|
|
|
|
var tp = Threadpool.new()
|
|
|
|
|
|
|
|
bench("EC parallel batch add (" & align($tp.numThreads, 2) & " threads) " & $EC.G & " (" & $numPoints & " points)", EC, iters):
|
|
|
|
tp.sum_reduce_vartime_parallel(r, points)
|
|
|
|
|
|
|
|
tp.shutdown()
|
|
|
|
|
|
|
|
proc msmParallelBench*(EC: typedesc, numPoints: int, iters: int) =
|
|
|
|
const bits = EC.F.C.getCurveOrderBitwidth()
|
|
|
|
var points = newSeq[ECP_ShortW_Aff[EC.F, EC.G]](numPoints)
|
|
|
|
var scalars = newSeq[BigInt[bits]](numPoints)
|
|
|
|
|
2023-06-04 15:41:54 +00:00
|
|
|
# Creating millions of points and clearing their cofactor takes a long long time
|
|
|
|
var tp = Threadpool.new()
|
|
|
|
|
|
|
|
proc genCoefPointPairs(rngSeed: uint64, start, len: int, points: ptr ECP_ShortW_Aff[EC.F, EC.G], scalars: ptr BigInt[bits]) {.nimcall.} =
|
|
|
|
let points = cast[ptr UncheckedArray[ECP_ShortW_Aff[EC.F, EC.G]]](points) # TODO use views to reduce verbosity
|
|
|
|
let scalars = cast[ptr UncheckedArray[BigInt[bits]]](scalars)
|
|
|
|
|
|
|
|
# RNGs are not threadsafe, create a threadlocal one seeded from the global RNG
|
|
|
|
var threadRng: RngState
|
|
|
|
threadRng.seed(rngSeed)
|
|
|
|
|
|
|
|
for i in start ..< start + len:
|
|
|
|
var tmp = threadRng.random_unsafe(EC)
|
|
|
|
tmp.clearCofactor()
|
|
|
|
points[i].affine(tmp)
|
|
|
|
scalars[i] = rng.random_unsafe(BigInt[bits])
|
|
|
|
|
|
|
|
let chunks = balancedChunksPrioNumber(0, numPoints, tp.numThreads)
|
|
|
|
|
|
|
|
syncScope:
|
|
|
|
for (id, start, size) in items(chunks):
|
|
|
|
tp.spawn genCoefPointPairs(rng.next(), start, size, points[0].addr, scalars[0].addr)
|
|
|
|
|
|
|
|
# Even if child threads are sleeping, it seems like perf is lower when there are threads around
|
|
|
|
# maybe because the kernel has more overhead or time quantum to keep track off so shut them down.
|
|
|
|
tp.shutdown()
|
2023-04-10 21:30:14 +00:00
|
|
|
|
|
|
|
var r{.noInit.}: EC
|
|
|
|
var startNaive, stopNaive, startMSMbaseline, stopMSMbaseline, startMSMopt, stopMSMopt, startMSMpara, stopMSMpara: MonoTime
|
|
|
|
|
|
|
|
if numPoints <= 100000:
|
2023-04-14 18:02:59 +00:00
|
|
|
startNaive = getMonotime()
|
2023-04-10 21:30:14 +00:00
|
|
|
bench("EC scalar muls " & align($numPoints, 10) & " (" & $bits & "-bit coefs, points)", EC, iters):
|
|
|
|
var tmp: EC
|
|
|
|
r.setInf()
|
|
|
|
for i in 0 ..< points.len:
|
|
|
|
tmp.fromAffine(points[i])
|
|
|
|
tmp.scalarMul(scalars[i])
|
|
|
|
r += tmp
|
2023-04-14 18:02:59 +00:00
|
|
|
stopNaive = getMonotime()
|
2023-04-10 21:30:14 +00:00
|
|
|
|
2023-04-14 18:02:59 +00:00
|
|
|
if numPoints <= 100000:
|
|
|
|
startMSMbaseline = getMonotime()
|
2023-04-10 21:30:14 +00:00
|
|
|
bench("EC multi-scalar-mul baseline " & align($numPoints, 10) & " (" & $bits & "-bit coefs, points)", EC, iters):
|
|
|
|
r.multiScalarMul_reference_vartime(scalars, points)
|
2023-04-14 18:02:59 +00:00
|
|
|
stopMSMbaseline = getMonotime()
|
2023-04-10 21:30:14 +00:00
|
|
|
|
|
|
|
block:
|
2023-04-14 18:02:59 +00:00
|
|
|
startMSMopt = getMonotime()
|
2023-04-10 21:30:14 +00:00
|
|
|
bench("EC multi-scalar-mul optimized " & align($numPoints, 10) & " (" & $bits & "-bit coefs, points)", EC, iters):
|
|
|
|
r.multiScalarMul_vartime(scalars, points)
|
2023-04-14 18:02:59 +00:00
|
|
|
stopMSMopt = getMonotime()
|
2023-04-10 21:30:14 +00:00
|
|
|
|
|
|
|
block:
|
2023-06-04 15:41:54 +00:00
|
|
|
tp = Threadpool.new()
|
2023-04-10 21:30:14 +00:00
|
|
|
|
2023-04-14 18:02:59 +00:00
|
|
|
startMSMpara = getMonotime()
|
2023-04-10 21:30:14 +00:00
|
|
|
bench("EC multi-scalar-mul" & align($tp.numThreads & " threads", 11) & align($numPoints, 10) & " (" & $bits & "-bit coefs, points)", EC, iters):
|
|
|
|
tp.multiScalarMul_vartime_parallel(r, scalars, points)
|
2023-04-14 18:02:59 +00:00
|
|
|
stopMSMpara = getMonotime()
|
2023-04-10 21:30:14 +00:00
|
|
|
|
|
|
|
tp.shutdown()
|
|
|
|
|
|
|
|
let perfNaive = inNanoseconds((stopNaive-startNaive) div iters)
|
|
|
|
let perfMSMbaseline = inNanoseconds((stopMSMbaseline-startMSMbaseline) div iters)
|
|
|
|
let perfMSMopt = inNanoseconds((stopMSMopt-startMSMopt) div iters)
|
|
|
|
let perfMSMpara = inNanoseconds((stopMSMpara-startMSMpara) div iters)
|
|
|
|
|
|
|
|
if numPoints <= 100000:
|
|
|
|
let speedupBaseline = float(perfNaive) / float(perfMSMbaseline)
|
|
|
|
echo &"Speedup ratio baseline over naive linear combination: {speedupBaseline:>6.3f}x"
|
|
|
|
|
|
|
|
let speedupOpt = float(perfNaive) / float(perfMSMopt)
|
|
|
|
echo &"Speedup ratio optimized over naive linear combination: {speedupOpt:>6.3f}x"
|
|
|
|
|
2023-04-14 18:02:59 +00:00
|
|
|
let speedupOptBaseline = float(perfMSMbaseline) / float(perfMSMopt)
|
|
|
|
echo &"Speedup ratio optimized over baseline linear combination: {speedupOptBaseline:>6.3f}x"
|
2023-04-10 21:30:14 +00:00
|
|
|
|
|
|
|
let speedupParaOpt = float(perfMSMopt) / float(perfMSMpara)
|
|
|
|
echo &"Speedup ratio parallel over optimized linear combination: {speedupParaOpt:>6.3f}x"
|