pragma circom 2.1.0; include "../node_modules/circomlib/circuits/poseidon.circom"; include "../node_modules/circomlib/circuits/switcher.circom"; include "../node_modules/circomlib/circuits/bitify.circom"; template parallel MerkleProof(LEVELS) { signal input leaf; signal input pathElements[LEVELS]; signal input pathIndices; signal output root; component switcher[LEVELS]; component hasher[LEVELS]; component indexBits = Num2Bits(LEVELS); indexBits.in <== pathIndices; for (var i = 0; i < LEVELS; i++) { switcher[i] = Switcher(); switcher[i].L <== i == 0 ? leaf : hasher[i - 1].out; switcher[i].R <== pathElements[i]; switcher[i].sel <== indexBits.out[i]; hasher[i] = Poseidon(2); hasher[i].inputs[0] <== switcher[i].outL; hasher[i].inputs[1] <== switcher[i].outR; } root <== hasher[LEVELS - 1].out; } function roundUpDiv(x, n) { var last = x % n; // get the last digit var div = x \ n; // get the division if (last > 0) { return div + 1; } else { return div; } } template parallel HashCheck(BLOCK_SIZE, CHUNK_SIZE) { signal input block[BLOCK_SIZE]; signal output hash; // Split array into chunks of size CHUNK_SIZE var NUM_CHUNKS = roundUpDiv(BLOCK_SIZE, CHUNK_SIZE); // Initialize an array to store hashes of each block component hashes[NUM_CHUNKS]; // Loop over chunks and hash them using Poseidon() for (var i = 0; i < NUM_CHUNKS; i++) { hashes[i] = Poseidon(CHUNK_SIZE); var start = i * CHUNK_SIZE; var end = start + CHUNK_SIZE; for (var j = start; j < end; j++) { if (j >= BLOCK_SIZE) { hashes[i].inputs[j - start] <== 0; } else { hashes[i].inputs[j - start] <== block[j]; } } } // Concatenate hashes into a single block var concat[NUM_CHUNKS]; for (var i = 0; i < NUM_CHUNKS; i++) { concat[i] = hashes[i].out; } // Hash concatenated array using Poseidon() again component h = Poseidon(NUM_CHUNKS); h.inputs <== concat; // Assign output to hash signal hash <== h.out; } template StorageProver(BLOCK_SIZE, QUERY_LEN, LEVELS, CHUNK_SIZE) { // BLOCK_SIZE: size of block in symbols // QUERY_LEN: query length, i.e. number if indices to be proven // LEVELS: size of Merkle Tree in the manifest // CHUNK_SIZE: number of symbols to hash in one go signal input chunks[QUERY_LEN][BLOCK_SIZE]; // chunks to be proven signal input siblings[QUERY_LEN][LEVELS]; // siblings hashes of chunks to be proven signal input path[QUERY_LEN]; // path of chunks to be proven signal input hashes[QUERY_LEN]; // hashes of chunks to be proven signal input root; // root of the Merkle Tree signal input salt; // salt (block hash) to prevent preimage attacks signal saltSquare <== salt * salt; // might not be necesary as it's part of the public inputs component hashers[QUERY_LEN]; for (var i = 0; i < QUERY_LEN; i++) { hashers[i] = HashCheck(BLOCK_SIZE, CHUNK_SIZE); hashers[i].block <== chunks[i]; hashers[i].hash === hashes[i]; } component merkelizer[QUERY_LEN]; for (var i = 0; i < QUERY_LEN; i++) { merkelizer[i] = MerkleProof(LEVELS); merkelizer[i].leaf <== hashes[i]; merkelizer[i].pathElements <== siblings[i]; merkelizer[i].pathIndices <== path[i]; merkelizer[i].root === root; } }