Codex

Codex: A Data Durability Engine

October 2022
V0.1



Table of Content

Introduction
Requirements

Design
Erasure Coding
Remote Auditing
Lazy Repair
Marketplace

Decentralized storage comparison

Interface
Peerld
Download
Upload
Info

Tutorial
Roadmap

References

N NNNoo o oo~ bdhA W W

-_ =
- 0



Codex

Introduction

Codex is a decentralized storage platform that aims to be the state-of-the-art solution
for all the Web3 applications seeking for storing large amounts of data without relying on a
centralized institution that could be viewed as a single point of failure [5]. For this, it is necessary
to use highly efficient reliability techniques that guarantee fault tolerance in a distributed system
in which node and network failures are frequent. In addition, it is important to design a system
that tolerates Byzantines failures, such as for example malicious nodes that do not fulfill their
data storage contracts properly. The technical challenges to implement such a platform without
incurring too much overhead on the system are important. This document explains the
requirements and design choices the Codex project targets in order to reach the objective of
offering the highest data durability guarantees in the ecosystem.

Requirements

Any storage system that aims to be a valuable piece of the future Web3 has to respect
specific requirements to contribute to the ecosystem. Codex’s vision of decentralized storage
requires guaranteeing the following properties:

e Decentralization: The objective of the Codex project is to help decentralized
applications have the infrastructure needed to offer unstoppable and uncensorable
services. For this, it is essential to have a completely decentralized underlying system.
Thus, Codex aims to be as decentralized as possible, by avoiding relying on big storage
providers and trying to implement protocol constructs that guarantee equal market
opportunities for small/solo storage providers.

e Durability: The primary intent of Codex is to provide the highest long-term data
durability guarantees in the market, even higher than centralized solutions. For this
reason, Codex leverages cutting edge technology related to Remote Auditing. In
addition, multiple analytical models and simulators have guided the research and
development (R&D) of Codex, in order to provide a highly optimized solution.

e Availability: In addition to long-term data durability, Web3 apps need to rely on low
latency data access to provide a coherent transition for users from Web2-like
user-interactions and experiences to their Web3 equivalent. This makes data availability
one of the principal requirements for decentralized storage. To reach that goal, Codex
implements strong incentives and a robust data dispersion scheme that allows for
extreme flexibility at the moment of accessing a dataset.

e Reliability: Decentralized storage systems rely on thousands of independent nodes to
provide storage, and many of those nodes might not have the most reliable
hardware/network. Thus, it is paramount for any decentralized storage solution to make
sure the system is resilient to frequent failures and high node churn rates. Codex



implements the strongest erasure coding techniques [6] to offer the best service level
agreements (SLAs) in the market.

e High-performance: While performance is obviously an important aspect of every
distributed system, Codex puts special emphasis on this. The Codex vision is that
storage is one of the most important components of the future digital technology in which
data is the most valuable resource. In particular, decentralized storage is critical to
guarantee a censorship-free digital community. As a result, Codex expects to be the
infrastructure support of thousands of Web3 enterprises that expect nothing but the best
performance for their businesses.

Design

Codex uses the latest innovations in storage technology to provide the highest durability
guarantees and the fastest performance. The main technology components used in Codex are
described below.

Erasure Coding

Any cloud storage solution, decentralized or not, relies on thousands of storage nodes in
order to deliver high performance and strong reliability. However, computer hardware is always
subject to failures, and in a system with thousands of hardware components, failures are rather
common. Therefore, it is important to use the most advanced techniques to guarantee that the
system is resilient to frequent failures. Codex does not rely on data replication but on erasure
coding. Most storage providers implement data replication due to its simplicity. However, data
replication is extremely inefficient in terms of storage utilization and offers a low level of
reliability [7]. In particular, Codex uses fast Reed-Solomon encoding to provide fast and robust
resilience [12].

Remote Auditing

As discussed in the previous section, data protection schemes are essential to
guarantee durability. Data protection schemes, however, need to be complemented with a fast
failure detection mechanism for any data storage network to recover from failures effectively.
Data loss detection is not a trivial problem in Byzantine decentralized systems. Malicious
storage nodes might try to implement a wide range of strategies to fakely pretend to store data
in order to save storage and bandwidth costs. To solve this issue, a large number of techniques
have been proposed in the academic literature, such as proof of custody [8], and proof of
space-time [1], among many others. Most of them rely on a frequent random sampling of data
blocks across the whole dataset. During this process, storage nodes have to provide clear
evidence that they hold the data they say they hold. While these mechanisms are widely
understood today, the real challenge is how to implement them efficiently. Indeed, storage
proofs can take significant space and they can also consume significant network bandwidth.
Codex aims to minimize proofs’ storage cost and network bandwidth using succinct
non-interactive arguments of knowledge (SNARKS) [9]. While the concept of SNARKS has



been in the literature for several years now, their efficient implementation has been out of reach
until very recently. Thus, Codex plans to leverage the latest, most optimized SNARK techniques
to implement the most efficient, low-cost, and highly reliable data loss detection system for
decentralized storage.

Lazy Repair

A good failure detection system needs to be complemented with a fast and efficient
recovery mechanism. It is critical to recover any piece of data missing in the system to
guarantee data durability. Codex implements a strong Reed-Solomon (RS) scheme in which
multiple data blocks from a dataset can be lost before the dataset becomes irretrievable. The
margin of lost blocks depends on the dataset and the specific parameters asked by the user, but
in all cases, Codex can tolerate multiple missing blocks and still be able to quickly reconstruct
the whole dataset. Depending on the node churn rate in the system, it might be bandwidth
intensive and inefficient to repair every block as soon as the missing block is detected since this
requires downloading a certain number of blocks for the RS algorithm to decode and produce
the original data. Therefore, Codex implements a bandwidth-efficient lazy recovery technique
[10] that still guarantees high reliability and minimizes the overhead on the platform. By reducing
the congestion on the network, Codex aims to provide the fastest, high-performance
decentralized storage solution in the ecosystem.

Marketplace

The marketplace of a decentralized storage platform is an important piece of the system
and it has a profound impact on several of the requirements expressed above. For instance, if
the marketplace just implements a naive first-come-first-served strategy, large storage providers
with low-latency and high-performance nodes will get most of the storage deals, generating
some sort of partial centralization. Another aspect related to the marketplace is the cost of data
repairs. The rules of the marketplace can drive the system towards more (or less) homogeneity
in terms of data distribution. In systems where the datasets are not homogeneously distributed
across all storage nodes, but instead accumulated on a few big nodes, the data repair is more
time-consuming because only a few nodes are involved in the recovery process and they need
to dedicate significant bandwidth and hardware resources for the data repair to be successful.
Codex implements an advanced marketplace that has been modeled and simulated to
guarantee the highest levels of decentralization and data distribution.

Decentralized storage comparison

There are several decentralized storage solutions with different features and
technologies. The most popular ones today are Filecoin [1], Storj [2], Arweave [3], and Sia [4].
However, none of them incorporates all the features that we estimate are necessary to create a
scalable, robust, and high-performance decentralized solution for Web3 applications. The
following table summarizes the differences between these storage solutions.



Feature Filecoin Storj Arweave Sia Codex
Decentralized storage network v v v v v
High-performance erasure coding X v X X v
SNARK-based proof of retrievability v X X X v
Bandwidth-efficient lazy repair X v X X v
Advanced marketplace protocol X X X X v

Interface

To try Codex, one can simply clone the repository [11]:

git clone https://github.com/status-im/nim-codex.git

To build the project, and run:

make update && make exec

The executable will be placed under the build directory under the project root. You can
run the client with:

./build/codex

The client exposes a REST API that can be used to interact with it. These commands
could be invoked with any HTTP client, however, the following endpoints assume the use of the
curl command.

Peerld

Connect to a peer identified by its ID. Takes an optional addrs parameter with a list of
valid multiaddresses. If addrs is absent, the peer will be discovered over the DHT. Example:

curl "127.0.0.1:8080/api/codex/vl/connect/<peer id>?addrs=<multiaddress>"




Download
Download data identified by a CID. Example:

curl -vvv "127.0.0.1:8080/api/codex/vl/download/<CID of the content>"

--output <name of output file>

Upload

Upload a file, upon success returns the CID of the uploaded file. Example:

curl -vvv -H "content-type: application/octet-stream" -H Expe -T "<path
to file>" "127.0.0.1:8080/api/codex/v1/upload” -X POST

Info

Get useful node info such as its peer id, address and SPR. Example:

curl -vvv "127.0.0.1:8080/api/codex/vl/info"

Tutorial

This short tutorial explains how to run two Codex clients. First, clone the Codex repository:

git clone https://github.com/status-im/nim-codex.git

cd nim-codex

To build the project run:

make update && make exec

Run the client with:
build/codex --data-dir="$(pwd)/Codex1" -i=127.0.0.1

This will start codex with a data directory pointing to Codex1 under the current execution
directory and announce itself on the DHT under 127.0.0.1.



To run a second client that automatically discovers nodes on the network, we need to get the
Signed Peer Record (SPR) of the first client, Client1. We can do this by querying the /info
endpoint of the node's REST API.

curl http:// . : /api/codex/vl1l/info

This should output information about Client1, including its PeerIlD, TCP/UDP addresses, data
directory, and SPR:

"id": "16Uiu2HAm92LGXYTuhtLaZzkFnsCx6FFJsNmswK6090PXFbSKHQEa",
"addrs": [

"/ip4/0.0.0.0/udp/8090",

"/ip4/0.0.0.0/tcp/49336"
1,

"repo": "/repos/status-im/nim-codex/Codex1",

"spr":
"spr:CiUIAhIhAmqg5fVU2yxPStLdUOWgwrkWZMHW2MHf616181jA4tssEgIDARpICicAIQgCEL
ECagD19VTbLE9KOt1Q5aDCuRZkwdbYwd _qLgXwiMDi2ywQ5v2V1AYaCwoIBHBAAAGRAh-aGgoKC
AR_AAABBts3KkcwRQIhAPOK138CviplVbMVnA_9q3N1K_nk50GuNp7DWeOqiJzzAiATQ2acPyQv

PxLU9YS-TiVo4RUXndRcWMFMX2Yjhw8k3A"
}

Now, let's start a second client, Client2. Because we're already using the default ports TCP
(:8080) and UDP (:8090) for the first client, we have to specify new ports to avoid a collision.
Additionally, we can specify the SPR from Client1 as the bootstrap node for discovery purposes,
allowing Client2 to determine where content is located in the network.

build/codex --data-dir="$(pwd)/Codex2" -i=127.0.0.1 --api-port=8081
--udp-port=8091
--bootstrap-node=spr:CiUIAhIhAmqg5fVU2yxPStLdUOWgWrkWZMHW2MHf61i618IjA4tssEg
IDARpICicAJQgCEiECagqD19VTbLE9KOt1Q5aDCuRZkwdbYwd gLgXwiMDi2ywQ5v2V1AYaCwolB
H8AAAGRAh-aGgoKCAR_AAABBts3KkcwRQIhAPOK138CviplVbMVnA 9g3N1K_ nk50GuNp7DWeOq
1JzzAiATQ2acPyQvPxLU9YS-TiVo4RUXndRcWMFMX2Y jhw8k3A

There are now two clients running. We could upload a file to Client1 and download that file
(given its CID) using Client2, by using the clients' REST API.

To upload the document upImage.png using Client1 do:

curl -vvv -H "content-type: application/octet-stream" -H Expect: -T

upImage.png "127.0.0.1:8080/api/codex/vl1/upload"” -X POST

You should see an output similar to the following one.



Trying 127.0.0.1:8080...
% Total % Received % Xferd Average Speed Time Time Time
Current
Dload Upload Total Spent Left
Speed

0* Connected to 127.0.0.1 (127.0.0.1) port
POST /api/codex/vl/upload HTTP/1.1

Host: 127.0.0.1:8080

User-Agent: curl/7.81.0

Accept: */*

content-type: application/octet-stream
Content-Length: 36862

[36862 bytes data]

We are completely uploaded and fine
Mark bundle as not supporting multiuse
HTTP/1.1 (0] ¢

Server: nim-presto/0.0.3 (amd64/linux)
Content-Length: 49

Content-Type: text/text

Date: Mon, Oct 19:18:35 GMT
Connection: keep-alive

>
>
>
>
>
>
>
.
*

A AN AN A A A A

—~

[49 bytes data]

100

17.6M

* Connection
zdj7WVjm5FiwQxzQVggtX56NPMmkPMwjGLASRQYEVP6kzDBs z

At this point, the document upImage.png has been uploaded to the Codex platform. The last
line of the output (zdj7WVim5FiwQxzQVggtX56NPMmkPMw])jGLASRQYEVP6kzDBsz)
represents the CID of the document, which you will need in order to retrieve the data.

Now, to download the document using the Client2 API and the document CID, do:

curl -vvv
"127.0.0.1:8081/api/codex/vl/download/zdj7WVjm5FiwQxzQVggtX56NPMmkPMwjGLASR

QYEVP6kzDBsz"

This will generate a new document downlmage.png. The output of the command should be
similar to this.



Trying 127.0.0.1:8080...
% Total % Received % Xferd Average Speed Time Time Time
Current

Dload Upload Total Spent Left

Speed

0* Connected to 127.0.0.1 (127.0.0.1) port
> GET
/api/codex/vl1l/download/zdj7WVjm5FiwQxzQVggtX56NPMmkPMwjGLASRQYEVP6kzDBsz
HTTP/1.1
> Host: 127.0.0.1:8080

User-Agent: curl/7.81.0

Accept: */*

Mark bundle as not supporting multiuse
HTTP/1.1 (0]

Transfer-Encoding: chunked

Server: nim-presto/0.0.3 (amd64/linux)
Content-Type: application/octet-stream
Date: Mon, Oct 19:20:17 GMT
Connection: keep-alive

{ [6 bytes data]

100 36862
5142k

* Connection

You can now verify that both documents are binary identical.

diff upImage.png downImage.png

This should produce no output at all. We hope this gives you an idea on how to use Codex for
your projects.

Roadmap

As in most research and development projects, Codex is being developed in multiple
stages, adding different features at each stage. At the end of each stage, a proof of concept
(PoC) will be released and available to the community. In the first stage (PoCO0) users will be
able to upload, download and share files, in the same way, as the interplanetary file system
(IPFS) allows it. Note that at this stage, data is not erasure coded and storage nodes are not
being verified with any POR mechanism, hence, there are no guarantees on data durability.

10



In the second stage (PoC1), datasets uploaded to the Codex platform will be
systematically encoded using erasure coding. The specific RS encoding parameters should be
selected by the user at the moment of uploading, depending on the specific durability
requirements and the service level agreement (SLA) of the dataset in question. At this stage,
the marketplace should be already in place and storage nodes can bid for storage contracts,
although at this time there should be no real monetary transactions taking place in the system.

Q4 Q1 Q2 Q3 Q4

2022 | 2023

Dagger Scimitar Longsword Testnet launch Katana

- Upload and - Fast erasure
download files coding (RS)

- No durability - Marketplace
guarantees and SLA

- SNARK-based - Stress testing - Payment
PoR verification and integration channels

- Bandwidth - Sustained - Full durability
incentives scalability tests guarantees

In the third stage (PoC2), storage nodes will submit proofs of the data they have using a
SNARK-based PoR verification system that minimizes storage and bandwidth overhead. When
data erasure is discovered in the system, the protocol follows the lazy repair strategy according
to the RS encoding parameters and the conditions of the system. Additionally, at this stage the
protocol already incorporates bandwidth incentives to maximize download performance.

Before the final release of the first official version of Codex, the Codex team will set up a
testnet with the intention of stress-testing the platform and performing large-scale tests. Users
will be able to use the testnet, search for vulnerabilities, and attempt to break the platform. The
intention of this phase is to measure the robustness of the system under different conditions.

Finally, Codex v1.0 is expected to be released at the end of 2023, providing scalable
payment channels with full durability guarantees for all users in the system.

References

[1] Filecoin: A Decentralized Storage Network, https:/filecoin.io/filecoin.pdf, 2017

[2] Storj: A Decentralized Cloud Storage Network Framework, https://www.storj.io/storjv3.pdf,
2018

[3] Archain: An Open, Irrevocable, Unforgeable and Uncensorable Archive for the Internet,
https://www.arweave.org/whitepaper.pdf, 2017

[4] Sia: Simple Decentralized Storage, https://sia.tech/sia.pdf, 2014

[5] Decentralizing Storage for Web3, https://blog.codex.storage/decentralizing-storage-for-web3/
2022

[6] Wicker, Stephen B., and Vijay K. Bhargava, eds. Reed-Solomon codes and their
applications. John Wiley & Sons, 1999.

[7] Weatherspoon, Hakim, and John D. Kubiatowicz. "Erasure coding vs. replication: A
quantitative comparison." International Workshop on Peer-to-Peer Systems. Springer, Berlin,
Heidelberg, 2002.

11


https://filecoin.io/filecoin.pdf
https://www.storj.io/storjv3.pdf
https://www.arweave.org/whitepaper.pdf
https://sia.tech/sia.pdf
https://blog.codex.storage/decentralizing-storage-for-web3/

[8] Kravchenko, Pavel, and Vlad Zamfir. "Cryptographic proof of custody for incentivized
file-sharing."

[9] Bitansky, Nir, et al. "Succinct non-interactive arguments via linear interactive proofs." Theory
of Cryptography Conference. Springer, Berlin, Heidelberg, 2013.

[10] Giroire, Frédéric, Julian Monteiro, and Stéphane Pérennes. "Peer-to-peer storage systems:
a practical guideline to be lazy." 2010 IEEE Global Telecommunications Conference
GLOBECOM 2010. IEEE, 2010.

[11] Codex, Decentralized Durability Engine, https://github.com/status-im/nim-codex

[12] Leopard-RS: MDS Reed-Solomon Erasure Correction Codes for Large Data in C,
https://github.com/catid/leopard

12


https://github.com/status-im/nim-codex
https://github.com/catid/leopard

